Denoising IMU Gyroscopes with Deep Learning for Open-Loop Attitude
Estimation
- URL: http://arxiv.org/abs/2002.10718v2
- Date: Fri, 26 Jun 2020 07:43:00 GMT
- Title: Denoising IMU Gyroscopes with Deep Learning for Open-Loop Attitude
Estimation
- Authors: Martin Brossard (CAOR), Silvere Bonnabel (UNC), Axel Barrau (CAOR)
- Abstract summary: This paper proposes a learning method for denoising gyroscopes of Inertial Measurement Units (IMUs) using ground truth data.
The obtained algorithm outperforms the state-of-the-art on the (unseen) test sequences.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a learning method for denoising gyroscopes of Inertial
Measurement Units (IMUs) using ground truth data, and estimating in real time
the orientation (attitude) of a robot in dead reckoning. The obtained algorithm
outperforms the state-of-the-art on the (unseen) test sequences. The obtained
performances are achieved thanks to a well-chosen model, a proper loss function
for orientation increments, and through the identification of key points when
training with high-frequency inertial data. Our approach builds upon a neural
network based on dilated convolutions, without requiring any recurrent neural
network. We demonstrate how efficient our strategy is for 3D attitude
estimation on the EuRoC and TUM-VI datasets. Interestingly, we observe our dead
reckoning algorithm manages to beat top-ranked visual-inertial odometry systems
in terms of attitude estimation although it does not use vision sensors. We
believe this paper offers new perspectives for visual-inertial localization and
constitutes a step toward more efficient learning methods involving IMUs. Our
open-source implementation is available at
https://github.com/mbrossar/denoise-imu-gyro.
Related papers
- Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
We propose a transformer-based deep homography estimation (DHE) network.
It takes the dense feature map extracted by a backbone network as input and fits homography for fast and learnable geometric verification.
Experiments on benchmark datasets show that our method can outperform several state-of-the-art methods.
arXiv Detail & Related papers (2024-02-25T13:22:17Z) - DUCK: Distance-based Unlearning via Centroid Kinematics [40.2428948628001]
This work introduces a novel unlearning algorithm, denoted as Distance-based Unlearning via Centroid Kinematics (DUCK)
evaluation of the algorithm's performance is conducted across various benchmark datasets.
We also introduce a novel metric, called Adaptive Unlearning Score (AUS), encompassing not only the efficacy of the unlearning process in forgetting target data but also quantifying the performance loss relative to the original model.
arXiv Detail & Related papers (2023-12-04T17:10:25Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - EMA-VIO: Deep Visual-Inertial Odometry with External Memory Attention [5.144653418944836]
Visual-inertial odometry (VIO) algorithms exploit the information from camera and inertial sensors to estimate position and translation.
Recent deep learning based VIO models attract attentions as they provide pose information in a data-driven way.
We propose a novel learning based VIO framework with external memory attention that effectively and efficiently combines visual and inertial features for states estimation.
arXiv Detail & Related papers (2022-09-18T07:05:36Z) - Efficient Deep Visual and Inertial Odometry with Adaptive Visual
Modality Selection [12.754974372231647]
We propose an adaptive deep-learning based VIO method that reduces computational redundancy by opportunistically disabling the visual modality.
A Gumbel-Softmax trick is adopted to train the policy network to make the decision process differentiable for end-to-end system training.
Experiment results show that our method achieves a similar or even better performance than the full-modality baseline.
arXiv Detail & Related papers (2022-05-12T16:17:49Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - FG-Net: Fast Large-Scale LiDAR Point CloudsUnderstanding Network
Leveraging CorrelatedFeature Mining and Geometric-Aware Modelling [15.059508985699575]
FG-Net is a general deep learning framework for large-scale point clouds understanding without voxelizations.
We propose a deep convolutional neural network leveraging correlated feature mining and deformable convolution based geometric-aware modelling.
Our approaches outperform state-of-the-art approaches in terms of accuracy and efficiency.
arXiv Detail & Related papers (2020-12-17T08:20:09Z) - Applications of Koopman Mode Analysis to Neural Networks [52.77024349608834]
We consider the training process of a neural network as a dynamical system acting on the high-dimensional weight space.
We show how the Koopman spectrum can be used to determine the number of layers required for the architecture.
We also show how using Koopman modes we can selectively prune the network to speed up the training procedure.
arXiv Detail & Related papers (2020-06-21T11:00:04Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
We establish that the complex ego-motions exhibited in handheld settings are a critical obstacle for learning depth.
We propose a data pre-processing method that rectifies training images by removing their relative rotations for effective learning.
Our results outperform the previous unsupervised SOTA method by a large margin on the challenging NYUv2 dataset.
arXiv Detail & Related papers (2020-06-04T08:59:17Z) - A Deep Learning Method for Complex Human Activity Recognition Using
Virtual Wearable Sensors [22.923108537119685]
Sensor-based human activity recognition (HAR) is now a research hotspot in multiple application areas.
We propose a novel method based on deep learning for complex HAR in the real-scene.
The proposed method can surprisingly converge in a few iterations and achieve an accuracy of 91.15% on a real IMU dataset.
arXiv Detail & Related papers (2020-03-04T03:31:23Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.