Fully-automated Body Composition Analysis in Routine CT Imaging Using 3D
Semantic Segmentation Convolutional Neural Networks
- URL: http://arxiv.org/abs/2002.10776v1
- Date: Tue, 25 Feb 2020 10:17:19 GMT
- Title: Fully-automated Body Composition Analysis in Routine CT Imaging Using 3D
Semantic Segmentation Convolutional Neural Networks
- Authors: Sven Koitka, Lennard Kroll, Eugen Malamutmann, Arzu Oezcelik, Felix
Nensa
- Abstract summary: Body tissue composition is a biomarker with high diagnostic and prognostic value in cardiovascular, oncological and orthopaedic diseases.
In this study, the aim was to develop a fully automated, reproducible and quantitative 3D volumetry of body tissue composition from standard CT examinations of the abdomen.
- Score: 0.6999740786886535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Body tissue composition is a long-known biomarker with high diagnostic and
prognostic value in cardiovascular, oncological and orthopaedic diseases, but
also in rehabilitation medicine or drug dosage. In this study, the aim was to
develop a fully automated, reproducible and quantitative 3D volumetry of body
tissue composition from standard CT examinations of the abdomen in order to be
able to offer such valuable biomarkers as part of routine clinical imaging.
Therefore an in-house dataset of 40 CTs for training and 10 CTs for testing
were fully annotated on every fifth axial slice with five different semantic
body regions: abdominal cavity, bones, muscle, subcutaneous tissue, and
thoracic cavity. Multi-resolution U-Net 3D neural networks were employed for
segmenting these body regions, followed by subclassifying adipose tissue and
muscle using known hounsfield unit limits. The S{\o}rensen Dice scores averaged
over all semantic regions was 0.9553 and the intra-class correlation
coefficients for subclassified tissues were above 0.99. Our results show that
fully-automated body composition analysis on routine CT imaging can provide
stable biomarkers across the whole abdomen and not just on L3 slices, which is
historically the reference location for analysing body composition in the
clinical routine.
Related papers
- Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Longitudinal Variability Analysis on Low-dose Abdominal CT with Deep
Learning-based Segmentation [20.38282484296331]
2D low dose single slice computed tomography (CT) provides a high resolution, quantitative tissue map.
There has been no comprehensive study for low-dose single slice CT longitudinal variability with automated segmentation.
We studied 1816 slices from 1469 subjects of Baltimore Longitudinal Study on Aging (BLSA) abdominal dataset.
arXiv Detail & Related papers (2022-09-28T16:43:29Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Automated segmentation of 3-D body composition on computed tomography [0.0]
Five different body compositions were manually annotated (VAT, SAT, IMAT, SM, and bone)
Ten-fold cross-validation method was used to develop and validate the performance of several convolutional neural networks (CNNs)
Among the three CNN models, UNet demonstrated the best overall performance in jointly segmenting the five body compositions.
arXiv Detail & Related papers (2021-12-16T15:38:27Z) - Comprehensive Validation of Automated Whole Body Skeletal Muscle,
Adipose Tissue, and Bone Segmentation from 3D CT images for Body Composition
Analysis: Towards Extended Body Composition [0.6176955945418618]
Powerful tools of artificial intelligence such as deep learning are making it feasible now to segment the entire 3D image and generate accurate measurements of all internal anatomy.
These will enable the overcoming of the severe bottleneck that existed previously, namely, the need for manual segmentation.
These measurements were hitherto unavailable thereby limiting the field to a very small and limited subset.
arXiv Detail & Related papers (2021-06-01T17:30:45Z) - iPhantom: a framework for automated creation of individualized
computational phantoms and its application to CT organ dosimetry [58.943644554192936]
This study aims to develop and validate a novel framework, iPhantom, for automated creation of patient-specific phantoms or digital-twins.
The framework is applied to assess radiation dose to radiosensitive organs in CT imaging of individual patients.
iPhantom precisely predicted all organ locations with good accuracy of Dice Similarity Coefficients (DSC) >0.6 for anchor organs and DSC of 0.3-0.9 for all other organs.
arXiv Detail & Related papers (2020-08-20T01:50:49Z) - Fully Automated and Standardized Segmentation of Adipose Tissue
Compartments by Deep Learning in Three-dimensional Whole-body MRI of
Epidemiological Cohort Studies [11.706960468832301]
Quantification and localization of different adipose tissue compartments from whole-body MR images is of high interest to examine metabolic conditions.
We propose a 3D convolutional neural network (DCNet) to provide a robust and objective segmentation.
Fast (5-7seconds) and reliable adipose tissue segmentation can be obtained with high Dice overlap.
arXiv Detail & Related papers (2020-08-05T17:30:14Z) - Deep Negative Volume Segmentation [60.44793799306154]
We propose a new angle to the 3D segmentation task: segment empty spaces between all the tissues surrounding the object.
Our approach is an end-to-end pipeline that comprises a V-Net for bone segmentation.
We validate the idea on the CT scans in a 50-patient dataset, annotated by experts in maxillofacial medicine.
arXiv Detail & Related papers (2020-06-22T16:55:23Z) - Deep Reinforcement Learning for Organ Localization in CT [59.23083161858951]
We propose a deep reinforcement learning approach for organ localization in CT.
In this work, an artificial agent is actively self-taught to localize organs in CT by learning from its asserts and mistakes.
Our method can use as a plug-and-play module for localizing any organ of interest.
arXiv Detail & Related papers (2020-05-11T10:06:13Z) - Large-scale biometry with interpretable neural network regression on UK
Biobank body MRI [1.3439502310822151]
The UK Biobank study has successfully imaged more than 32,000 volunteer participants with magnetic resonance imaging (MRI)
Despite its potential for research, this vast amount of data presents a challenge to established methods of evaluation.
In this work, neural networks were trained for image-based regression to infer various biological metrics from the neck-to-knee body MRI automatically.
arXiv Detail & Related papers (2020-02-17T09:47:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.