A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT
- URL: http://arxiv.org/abs/2503.12698v1
- Date: Sun, 16 Mar 2025 23:55:02 GMT
- Title: A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT
- Authors: Dazhou Guo, Zhanghexuan Ji, Yanzhou Su, Dandan Zheng, Heng Guo, Puyang Wang, Ke Yan, Yirui Wang, Qinji Yu, Zi Li, Minfeng Xu, Jianfeng Zhang, Haoshen Li, Jia Ge, Tsung-Ying Ho, Bing-Shen Huang, Tashan Ai, Kuaile Zhao, Na Shen, Qifeng Wang, Yun Bian, Tingyu Wu, Peng Du, Hua Zhang, Feng-Ming Kong, Alan L. Yuille, Cher Heng Tan, Chunyan Miao, Perry J. Pickhardt, Senxiang Yan, Ronald M. Summers, Le Lu, Dakai Jin, Xianghua Ye,
- Abstract summary: There is no fully annotated CT dataset with all anatomies delineated for training.<n>We propose a novel continual learning-driven CT model that can segment complete anatomies.<n>Our single unified CT segmentation model, CL-Net, can highly accurately segment a clinically comprehensive set of 235 fine-grained whole-body anatomies.
- Score: 67.34586036959793
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precision medicine in the quantitative management of chronic diseases and oncology would be greatly improved if the Computed Tomography (CT) scan of any patient could be segmented, parsed and analyzed in a precise and detailed way. However, there is no such fully annotated CT dataset with all anatomies delineated for training because of the exceptionally high manual cost, the need for specialized clinical expertise, and the time required to finish the task. To this end, we proposed a novel continual learning-driven CT model that can segment complete anatomies presented using dozens of previously partially labeled datasets, dynamically expanding its capacity to segment new ones without compromising previously learned organ knowledge. Existing multi-dataset approaches are not able to dynamically segment new anatomies without catastrophic forgetting and would encounter optimization difficulty or infeasibility when segmenting hundreds of anatomies across the whole range of body regions. Our single unified CT segmentation model, CL-Net, can highly accurately segment a clinically comprehensive set of 235 fine-grained whole-body anatomies. Composed of a universal encoder, multiple optimized and pruned decoders, CL-Net is developed using 13,952 CT scans from 20 public and 16 private high-quality partially labeled CT datasets of various vendors, different contrast phases, and pathologies. Extensive evaluation demonstrates that CL-Net consistently outperforms the upper limit of an ensemble of 36 specialist nnUNets trained per dataset with the complexity of 5% model size and significantly surpasses the segmentation accuracy of recent leading Segment Anything-style medical image foundation models by large margins. Our continual learning-driven CL-Net model would lay a solid foundation to facilitate many downstream tasks of oncology and chronic diseases using the most widely adopted CT imaging.
Related papers
- Foundation Model for Whole-Heart Segmentation: Leveraging Student-Teacher Learning in Multi-Modal Medical Imaging [0.510750648708198]
Whole-heart segmentation from CT and MRI scans is crucial for cardiovascular disease analysis.
Existing methods struggle with modality-specific biases and the need for extensive labeled datasets.
We propose a foundation model for whole-heart segmentation using a self-supervised learning framework based on a student-teacher architecture.
arXiv Detail & Related papers (2025-03-24T14:47:54Z) - SegBook: A Simple Baseline and Cookbook for Volumetric Medical Image Segmentation [20.026663367994356]
Large amounts of full-body CT images provide the opportunity to pre-train powerful models.
It remains unclear in which conditions these pre-trained models can be transferred to various downstream medical segmentation tasks.
We collected 87 public datasets varying in modality, target, and sample size to evaluate the transfer ability of full-body CT pre-trained models.
arXiv Detail & Related papers (2024-11-21T19:00:01Z) - AG-CRC: Anatomy-Guided Colorectal Cancer Segmentation in CT with
Imperfect Anatomical Knowledge [9.961742312147674]
We develop a novel Anatomy-Guided segmentation framework to exploit the auto-generated organ masks.
We extensively evaluate the proposed method on two CRC segmentation datasets.
arXiv Detail & Related papers (2023-10-07T03:22:06Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Continual Segment: Towards a Single, Unified and Accessible Continual
Segmentation Model of 143 Whole-body Organs in CT Scans [31.388497540849297]
We propose a new architectural CSS learning framework to learn a single deep segmentation model for segmenting a total of 143 whole-body organs.
We trained and validated on 3D CT scans of 2500+ patients from four datasets, our single network can segment total 143 whole-body organs with very high accuracy.
arXiv Detail & Related papers (2023-02-01T00:49:21Z) - CLIP-Driven Universal Model for Organ Segmentation and Tumor Detection [36.08551407926805]
We propose the CLIP-Driven Universal Model, which incorporates text embedding learned from Contrastive Language-Image Pre-training to segmentation models.
The proposed model is developed from an assembly of 14 datasets, using a total of 3,410 CT scans for training and then evaluated on 6,162 external CT scans from 3 additional datasets.
arXiv Detail & Related papers (2023-01-02T18:07:44Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.