Wireless Fingerprinting via Deep Learning: The Impact of Confounding
Factors
- URL: http://arxiv.org/abs/2002.10791v3
- Date: Tue, 9 Mar 2021 10:59:29 GMT
- Title: Wireless Fingerprinting via Deep Learning: The Impact of Confounding
Factors
- Authors: Metehan Cekic, Soorya Gopalakrishnan, Upamanyu Madhow
- Abstract summary: We investigate learning device fingerprints using complex-valued deep neural networks (DNNs)
We ask whether such fingerprints can be made robust to distribution shifts across time and locations due to clock drift and variations in the wireless channel.
We propose and evaluate strategies, based on augmentation and estimation, to promote generalizations of these confounding factors.
- Score: 13.126014437648609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Can we distinguish between two wireless transmitters sending exactly the same
message, using the same protocol? The opportunity for doing so arises due to
subtle nonlinear variations across transmitters, even those made by the same
manufacturer. Since these effects are difficult to model explicitly, we
investigate learning device fingerprints using complex-valued deep neural
networks (DNNs) that take as input the complex baseband signal at the receiver.
We ask whether such fingerprints can be made robust to distribution shifts
across time and locations due to clock drift and variations in the wireless
channel. In this paper, we point out that, unless proactively discouraged from
doing so, DNNs learn these strong confounding features rather than the
nonlinear device-specific characteristics that we seek to learn. We propose and
evaluate strategies, based on augmentation and estimation, to promote
generalization across realizations of these confounding factors, using data
from WiFi and ADS-B protocols. We conclude that, while DNN training has the
advantage of not requiring explicit signal models, significant modeling
insights are required to focus the learning on the effects we wish to capture.
Related papers
- Unsupervised Contrastive Learning for Robust RF Device Fingerprinting
Under Time-Domain Shift [12.443489826220183]
Radio Frequency (RF) device fingerprinting has been recognized as a potential technology for automated wireless device identification and classification.
It faces a key challenge due to the domain shift that could arise from variations in the channel conditions and environmental settings.
This paper introduces a novel solution that leverages contrastive learning to mitigate this domain shift problem.
arXiv Detail & Related papers (2024-03-06T20:33:55Z) - Locality Sensitive Hashing for Network Traffic Fingerprinting [5.062312533373298]
We use locality-sensitive hashing (LSH) for network traffic fingerprinting.
Our method increases the accuracy of state-of-the-art by 12% achieving around 94% accuracy in identifying devices in a network.
arXiv Detail & Related papers (2024-02-12T21:14:37Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Uncovering the Portability Limitation of Deep Learning-Based Wireless
Device Fingerprints [10.698553177585973]
Device fingerprinting approaches rely on deep learning to extract device-specific features solely from raw RF signals.
One widely known issue lies in the inability of these approaches to maintain good performances when the training data and testing data are collected under varying deployment domains.
We will present some ideas on how to go about addressing these challenges so as to make deep learning-based device fingerprinting more resilient to domain variability.
arXiv Detail & Related papers (2022-11-14T19:03:55Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - ChaRRNets: Channel Robust Representation Networks for RF Fingerprinting [0.0]
We present complex-valued Convolutional Neural Networks (CNNs) for RF fingerprinting.
We focus on the problem of fingerprinting wireless IoT devices in-the-wild using Deep Learning (DL) techniques.
arXiv Detail & Related papers (2021-05-08T03:03:21Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
Deep Neural Networks (DNNs) using convolutional layers are state-of-the-art in many tasks in communications.
In other domains, like image classification, DNNs have been shown to be vulnerable to adversarial perturbations.
We propose a novel framework to test the robustness of current state-of-the-art models.
arXiv Detail & Related papers (2021-03-27T19:58:06Z) - Constructing Deep Neural Networks with a Priori Knowledge of Wireless
Tasks [37.060397377445504]
Two kinds of permutation invariant properties widely existed in wireless tasks can be harnessed to reduce the number of model parameters.
We find special architecture of DNNs whose input-output relationships satisfy the properties, called permutation invariant DNN (PINN)
We take predictive resource allocation and interference coordination as examples to show how the PINNs can be employed for learning the optimal policy with unsupervised and supervised learning.
arXiv Detail & Related papers (2020-01-29T08:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.