Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks
- URL: http://arxiv.org/abs/2210.03911v1
- Date: Sat, 8 Oct 2022 04:32:58 GMT
- Title: Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks
- Authors: Dawei Gao, Qinghua Guo, Guisheng Liao, Yonina C. Eldar, Yonghui Li,
Yanguang Yu, and Branka Vucetic
- Abstract summary: In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
- Score: 101.59367762974371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate signal detection in
multiple-input-multiple-output (MIMO) communication systems with hardware
impairments, such as power amplifier nonlinearity and in-phase/quadrature
imbalance. To deal with the complex combined effects of hardware imperfections,
neural network (NN) techniques, in particular deep neural networks (DNNs), have
been studied to directly compensate for the impact of hardware impairments.
However, it is difficult to train a DNN with limited pilot signals, hindering
its practical applications. In this work, we investigate how to achieve
efficient Bayesian signal detection in MIMO systems with hardware
imperfections. Characterizing combined hardware imperfections often leads to
complicated signal models, making Bayesian signal detection challenging. To
address this issue, we first train an NN to "model" the MIMO system with
hardware imperfections and then perform Bayesian inference based on the trained
NN. Modelling the MIMO system with NN enables the design of NN architectures
based on the signal flow of the MIMO system, minimizing the number of NN layers
and parameters, which is crucial to achieving efficient training with limited
pilot signals. We then represent the trained NN with a factor graph, and design
an efficient message passing based Bayesian signal detector, leveraging the
unitary approximate message passing (UAMP) algorithm. The implementation of a
turbo receiver with the proposed Bayesian detector is also investigated.
Extensive simulation results demonstrate that the proposed technique delivers
remarkably better performance than state-of-the-art methods.
Related papers
- Edge Graph Neural Networks for Massive MIMO Detection [15.970981766599035]
Massive Multiple-Input Multiple-Out (MIMO) detection is an important problem in modern wireless communication systems.
While traditional Belief Propagation (BP) detectors perform poorly on loopy graphs, the recent Graph Neural Networks (GNNs)-based method can overcome the drawbacks of BP and achieve superior performance.
arXiv Detail & Related papers (2022-05-22T08:01:47Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
The proposed method first pre-processes the received signal by using a zero-forcing (ZF) detector and then uses a neural network consisting of a convolutional neural network (CNN) followed by a fully-connected neural network (FCNN)
The FCNN part uses only two fully-connected layers, which can be adapted to yield a trade-off between complexity and bit error rate (BER) performance.
It has been demonstrated that the proposed deep convolutional neural network-based detection and demodulation scheme provides better BER performance compared to ZF detector with a reasonable complexity increase.
arXiv Detail & Related papers (2022-02-06T22:18:42Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
millimeter wave (mmWave) multiuser multiple-input multiple-output (MU-MIMO) systems with discrete lens arrays have received great attention.
In this work, we investigate the joint design of a beam precoding matrix for mmWave MU-MIMO systems with DLA.
arXiv Detail & Related papers (2021-01-05T03:55:04Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Graph Neural Networks for Massive MIMO Detection [8.516590865173407]
We learn a message-passing solution for the inference task of massive multiple-input multiple-output (MIMO) detection in wireless communication.
We adopt a graphical model based on the Markov random field (MRF) where belief propagation (BP) yields poor results when it assumes a uniform prior over the transmitted symbols.
arXiv Detail & Related papers (2020-07-11T07:34:56Z) - A Modular Neural Network Based Deep Learning Approach for MIMO Signal
Detection [12.769554897969307]
artificial neural network (ANN) assisted multiple-input multiple-output (MIMO) signal detection can be modeled as ANN-assisted lossy vector quantization (VQ)
We propose a novel modular neural network based approach, termed MNNet, where the whole network is formed by a set of pre-defined ANN modules.
Our simulation results show that the MNNet approach largely improves the deep-learning capacity with near-optimal performance in various cases.
arXiv Detail & Related papers (2020-04-01T12:56:38Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z) - Deep HyperNetwork-Based MIMO Detection [10.433286163090179]
Conventional algorithms are either too complex to be practical or suffer from poor performance.
Recent approaches tried to address those challenges by implementing the detector as a deep neural network.
In this work, we address both issues by training an additional neural network (NN), referred to as the hypernetwork, which takes as input the channel matrix and generates the weights of the neural NN-based detector.
arXiv Detail & Related papers (2020-02-07T13:03:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.