On the robustness of the NV-NMR spectrometer setup to magnetic field
inhomogeneities
- URL: http://arxiv.org/abs/2002.10852v1
- Date: Tue, 25 Feb 2020 13:34:32 GMT
- Title: On the robustness of the NV-NMR spectrometer setup to magnetic field
inhomogeneities
- Authors: Yotam Vaknin, Benedikt Tratzmiller, Tuvia Gefen, Ilai Schwartz, Martin
Plenio and Alex Retzker
- Abstract summary: Field inhomogeneities are a major source of noise that limits spectral resolution in state of the art NV - NMR experiments.
We propose a route in which this limitation could be circumvented by utilising the nanometric scale and the quantumness of the detector.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The NV-NMR spectrometer is a promising candidate for detection of NMR signals
at the nano scale. Field inhomogeneities, however, are a major source of noise
that limits spectral resolution in state of the art NV - NMR experiments and
constitutes a major bottleneck in the development of nano scale NMR. Here we
propose, a route in which this limitation could be circumvented in NV-NMR
spectrometer experiments, by utilising the nanometric scale and the quantumness
of the detector.
Related papers
- Nutation-Based Longitudinal Sensing Protocols for High-Field NMR With Nitrogen-Vacancy Centers in Diamond [0.0]
Nitrogen vacancy (NV) centers in diamond enable nuclear magnetic resonance (NMR) spectroscopy of samples at the nano- and micron scales.
We discuss how pulse errors, finite pulse lengths, and nuclear spin-spin couplings affect the resulting NMR spectra.
We find that DRACAERIS is less susceptible to pulse imperfections and off-resonance effects than previous protocols for longitudinal magnetization detection.
arXiv Detail & Related papers (2023-10-12T16:58:01Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Ultra-High Q Nanomechanical Resonators for Force Sensing [91.3755431537592]
I propose that such resonators will allow the detection of electron and nuclear spins with high spatial resolution.
The article lists the challenges that must be overcome before this vision can become reality, and indicates potential solutions.
arXiv Detail & Related papers (2022-09-12T12:21:00Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Nanometer-Scale Nuclear Magnetic Resonance Diffraction with Sub-\AA
ngstrom Precision [0.0]
We present a new approach to nanoMRI utilizing nuclear magnetic resonance diffraction (NMRd)
The realization of NMRd on the atomic scale would create a powerful new methodology for materials characterization utilizing the spectroscopic capabilities of NMR.
arXiv Detail & Related papers (2022-04-01T05:53:52Z) - Nanoscale Solid-State Nuclear Quadrupole Resonance Spectroscopy using
Depth-Optimized Nitrogen-Vacancy Ensembles in Diamond [9.322875230001717]
Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) spectroscopy of bulk quantum materials have provided insight into phenomena such as quantum phase criticality, magnetism, and superconductivity.
With the emergence of nanoscale 2-D materials with magnetic phenomena, inductively-detected NMR and NQR spectroscopy are not sensitive enough to detect the smaller number of spins in nanomaterials.
The nitrogen-vacancy (NV) center in diamond has shown promise in bringing the analytic power of NMR and NQR spectroscopy to the nanoscale.
arXiv Detail & Related papers (2021-12-29T22:19:17Z) - Low temperature photo-physics of single NV centers in diamond [43.55994393060723]
We investigate the magnetic field dependent photo-physics of Nitrogen-Vacancy (NV) color centers in diamond under cryogenic conditions.
We observe significant reductions in the NV photoluminescence rate, which indicate a marked decrease in the optical readout efficiency of the NV's ground state spin.
Our results offer new insights into the structure of the NVs' excited states and a new tool for their effective characterization.
arXiv Detail & Related papers (2021-05-17T18:00:02Z) - Electron-electron double resonance detected NMR spectroscopy using
ensemble NV centers at 230 GHz and 8.3 Tesla [0.0]
The nitrogen-vacancy (NV) center has enabled widespread study of nanoscale nuclear magnetic resonance (NMR) spectroscopy at low magnetic fields.
We have explored an NV-detected NMR technique for applications of high field NMR.
arXiv Detail & Related papers (2021-05-11T16:24:20Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Zero- to ultralow-field nuclear magnetic resonance and its applications [11.963366832132495]
ZULF NMR detects nuclear magnetization signals in the sub-microtesla regime.
Spin-exchange relaxation-free atomic magnetometers provide a new generation of sensitive detector for ZULF NMR.
ZULF NMR has recently attracted considerable attention in chemistry, biology, medicine, and tests of fundamental physics.
arXiv Detail & Related papers (2020-11-30T16:13:20Z) - Real-time estimation of the optically detected magnetic resonance shift
in diamond quantum thermometry [47.50219326456544]
We investigate the real-time estimation protocols for the frequency shift of optically detected magnetic resonance (ODMR) of nitrogen-vacancy centers in nanodiamonds (NDs)
Efficiently integrating multipoint ODMR measurements and ND particle tracking into fluorescence microscopy has recently demonstrated stable monitoring of the temperature inside living animals.
arXiv Detail & Related papers (2020-06-12T01:44:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.