Local nanoscale probing of electron spins using NV centers in diamond
- URL: http://arxiv.org/abs/2507.13295v2
- Date: Mon, 28 Jul 2025 10:21:13 GMT
- Title: Local nanoscale probing of electron spins using NV centers in diamond
- Authors: Sergei Trofimov, Christos Thessalonikios, Victor Deinhart, Alexander Spyrantis, Lucas Tsunaki, Kseniia Volkova, Katja Höflich, Boris Naydenov,
- Abstract summary: nitrogen-vacancy (NV) centers have been widely employed as nanoscale quantum sensors.<n>We fabricate nanoscale NV center ensembles in a diamond crystal containing low concentrations of nitrogen.<n>We measure the local nitrogen concentration on the level of 230 ppb (atomic parts per billion) using the double electron-electron resonance technique.
- Score: 34.82692226532414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Substitutional nitrogen atoms in a diamond crystal (P1 centers) are, on one hand, a resource for creation of nitrogen-vacancy (NV) centers, that have been widely employed as nanoscale quantum sensors. On the other hand, P1's electron spin is a source of paramagnetic noise that degrades the NV's performance by shortening its coherence time. Accurate quantification of nitrogen concentration is therefore essential for optimizing diamond-based quantum devices. However, bulk characterization methods based on optical absorption or electron paramagnetic resonance often overlook local variations in nitrogen content. In this work, we use a helium ion microscope to fabricate nanoscale NV center ensembles at predefined sites in a diamond crystal containing low concentrations of nitrogen. We then utilize these NV-based probes to measure the local nitrogen concentration on the level of 230 ppb (atomic parts per billion) using the double electron-electron resonance (DEER) technique. Moreover, by comparing the DEER spectra with numerical simulations, we managed to determine the concentration of other unknown paramagnetic defects created during the ion implantation, reaching 15 ppb depending on the implantation dose.
Related papers
- Prospects for Ultralow-Mass Nuclear Magnetic Resonance using Spin Defects in Hexagonal Boron Nitride [0.0]
We develop an alternative nanoscale NMR sensor using the negatively charged boron vacancy ($V_B-$) in hexagonal boron nitride (hBN)<n>As a van der Waals material, hBN's surface is free from dangling bonds and other sources of paramagnetic noise that degrade the performance of near surface NVs.<n>We propose measurement protocols for $V_B-$ NMR for both statistically and uniformly polarized samples at the nano- and micron-scales.
arXiv Detail & Related papers (2025-05-01T08:19:55Z) - Creation of Negatively Charged GeV and SnV centers in Nanodiamonds via Ion Implantation [39.93659648269682]
Solid state quantum emitters, in particular group-IV vacancy centers in diamond, are at the forefront of research in quantum technologies.<n>We present the fabrication of germanium- and tin- vacancy centers by means of ion implantation.<n>We achieve high purity single photon emission via resonant excitation and strong coherent drive of a SnV$-$ center.
arXiv Detail & Related papers (2025-03-25T09:25:51Z) - A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)<n>The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.<n>We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Designing Optically Addressable Nitrogen-Vacancy Centers in Ultra-Small Nanodiamonds: Insights from First-Principles Calculations [0.0]
We present first-principles electronic structure calculations of color centers in ultrasmall nanodiamonds (USNDs)<n>We find that the nitrogen-vacancy (NV-) can be stabilized in a negative charge state if the nanoparticles are terminated by fluorine, hydroxyl, and ether.<n>Interestingly, the phonon renormalizations of single-particle energy levels found in arrays contribute to the charge stability of negatively charged NV centers.
arXiv Detail & Related papers (2024-12-02T21:09:15Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Detecting nitrogen-vacancy-hydrogen centers on the nanoscale using
nitrogen-vacancy centers in diamond [0.0]
nitrogen-vacancy-hydrogen complex (NVH) outnumbers the nitrogen vacancy (NV) defect by at least one order of magnitude creating a dense spin bath.
Monitoring and controlling the spin bath is essential to produce and understand engineered diamond material with high NV concentrations for quantum applications.
arXiv Detail & Related papers (2023-11-30T15:30:36Z) - Enhanced Spectral Density of a Single Germanium Vacancy Center in a
Nanodiamond by Cavity-Integration [35.759786254573896]
Color centers in diamond, among them the negatively-charged germanium vacancy (GeV$-$), are promising candidates for many applications of quantum optics.
We demonstrate the transfer of a nanodiamond containing a single ingrown GeV- center with excellent optical properties to an open Fabry-P'erot microcavity.
arXiv Detail & Related papers (2023-07-03T10:33:06Z) - Localized Nitrogen-Vacancy centers generated by low-repetition rate
fs-laser pulses [0.0]
The nitrogen-vacancy (NV) center is one of the most interesting to be used as a platform for quantum technologies and nanosensing.
Traditionally, synthetic diamond is irradiated with high-energy electrons or nitrogen ions to generate these color-centers.
For precise positioning of the NV centers, fs-laser irradiation has been proposed as an alternative approach to produce spatially localized NV centers in diamond.
arXiv Detail & Related papers (2022-10-14T19:32:37Z) - Nanoscale Solid-State Nuclear Quadrupole Resonance Spectroscopy using
Depth-Optimized Nitrogen-Vacancy Ensembles in Diamond [9.322875230001717]
Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) spectroscopy of bulk quantum materials have provided insight into phenomena such as quantum phase criticality, magnetism, and superconductivity.
With the emergence of nanoscale 2-D materials with magnetic phenomena, inductively-detected NMR and NQR spectroscopy are not sensitive enough to detect the smaller number of spins in nanomaterials.
The nitrogen-vacancy (NV) center in diamond has shown promise in bringing the analytic power of NMR and NQR spectroscopy to the nanoscale.
arXiv Detail & Related papers (2021-12-29T22:19:17Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.