Incorporating Expert Prior Knowledge into Experimental Design via
Posterior Sampling
- URL: http://arxiv.org/abs/2002.11256v1
- Date: Wed, 26 Feb 2020 01:57:36 GMT
- Title: Incorporating Expert Prior Knowledge into Experimental Design via
Posterior Sampling
- Authors: Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Antonio Robles-Kelly,
Svetha Venkatesh
- Abstract summary: Experimenters can often acquire the knowledge about the location of the global optimum.
It is unknown how to incorporate the expert prior knowledge about the global optimum into Bayesian optimization.
An efficient Bayesian optimization approach has been proposed via posterior sampling on the posterior distribution of the global optimum.
- Score: 58.56638141701966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scientific experiments are usually expensive due to complex experimental
preparation and processing. Experimental design is therefore involved with the
task of finding the optimal experimental input that results in the desirable
output by using as few experiments as possible. Experimenters can often acquire
the knowledge about the location of the global optimum. However, they do not
know how to exploit this knowledge to accelerate experimental design. In this
paper, we adopt the technique of Bayesian optimization for experimental design
since Bayesian optimization has established itself as an efficient tool for
optimizing expensive black-box functions. Again, it is unknown how to
incorporate the expert prior knowledge about the global optimum into Bayesian
optimization process. To address it, we represent the expert knowledge about
the global optimum via placing a prior distribution on it and we then derive
its posterior distribution. An efficient Bayesian optimization approach has
been proposed via posterior sampling on the posterior distribution of the
global optimum. We theoretically analyze the convergence of the proposed
algorithm and discuss the robustness of incorporating expert prior. We evaluate
the efficiency of our algorithm by optimizing synthetic functions and tuning
hyperparameters of classifiers along with a real-world experiment on the
synthesis of short polymer fiber. The results clearly demonstrate the
advantages of our proposed method.
Related papers
- Human-Algorithm Collaborative Bayesian Optimization for Engineering Systems [0.0]
We re-introduce the human back into the data-driven decision making loop by outlining an approach for collaborative Bayesian optimization.
Our methodology exploits the hypothesis that humans are more efficient at making discrete choices rather than continuous ones.
We demonstrate our approach across a number of applied and numerical case studies including bioprocess optimization and reactor geometry design.
arXiv Detail & Related papers (2024-04-16T23:17:04Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
We propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO)
ZOPO incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization.
Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency.
arXiv Detail & Related papers (2024-03-05T14:18:15Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - A General Framework for User-Guided Bayesian Optimization [51.96352579696041]
We propose ColaBO, the first Bayesian-principled framework for prior beliefs beyond the typical kernel structure.
We empirically demonstrate ColaBO's ability to substantially accelerate optimization when the prior information is accurate, and to retain approximately default performance when it is misleading.
arXiv Detail & Related papers (2023-11-24T18:27:26Z) - Synthetic Principal Component Design: Fast Covariate Balancing with
Synthetic Controls [16.449993388646277]
We develop a globally convergent and practically efficient optimization algorithm.
We establish the first global optimality guarantee for experiment design when pre-treatment data is sampled from certain data-generating processes.
arXiv Detail & Related papers (2022-11-28T11:45:54Z) - Combining Multi-Fidelity Modelling and Asynchronous Batch Bayesian
Optimization [10.29946890434873]
This paper proposes an algorithm combining multi-fidelity and asynchronous batch methods.
We empirically study the algorithm behavior, and show it can outperform single-fidelity batch methods and multi-fidelity sequential methods.
As an application, we consider designing electrode materials for optimal performance in pouch cells using experiments with coin cells to approximate battery performance.
arXiv Detail & Related papers (2022-11-11T12:02:40Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
We propose a novel approach for development of chaos expansion (PCE) surrogate model for the design utility function.
This novel technique enables the derivation of a reasonable quality response surface for the targeted objective function with a computational budget comparable to several single-point evaluations.
arXiv Detail & Related papers (2020-08-10T09:42:59Z) - Upper Trust Bound Feasibility Criterion for Mixed Constrained Bayesian
Optimization with Application to Aircraft Design [41.74498230885008]
We adapt the so-called super effcient global optimization algorithm to solve more accurately mixed constrained problems.
We show the good potential of the approach on a set of numerical experiments.
arXiv Detail & Related papers (2020-05-11T12:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.