Human-Algorithm Collaborative Bayesian Optimization for Engineering Systems
- URL: http://arxiv.org/abs/2404.10949v1
- Date: Tue, 16 Apr 2024 23:17:04 GMT
- Title: Human-Algorithm Collaborative Bayesian Optimization for Engineering Systems
- Authors: Tom Savage, Ehecatl Antonio del Rio Chanona,
- Abstract summary: We re-introduce the human back into the data-driven decision making loop by outlining an approach for collaborative Bayesian optimization.
Our methodology exploits the hypothesis that humans are more efficient at making discrete choices rather than continuous ones.
We demonstrate our approach across a number of applied and numerical case studies including bioprocess optimization and reactor geometry design.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian optimization has been successfully applied throughout Chemical Engineering for the optimization of functions that are expensive-to-evaluate, or where gradients are not easily obtainable. However, domain experts often possess valuable physical insights that are overlooked in fully automated decision-making approaches, necessitating the inclusion of human input. In this article we re-introduce the human back into the data-driven decision making loop by outlining an approach for collaborative Bayesian optimization. Our methodology exploits the hypothesis that humans are more efficient at making discrete choices rather than continuous ones and enables experts to influence critical early decisions. We apply high-throughput (batch) Bayesian optimization alongside discrete decision theory to enable domain experts to influence the selection of experiments. At every iteration we apply a multi-objective approach that results in a set of alternate solutions that have both high utility and are reasonably distinct. The expert then selects the desired solution for evaluation from this set, allowing for the inclusion of expert knowledge and improving accountability, whilst maintaining the advantages of Bayesian optimization. We demonstrate our approach across a number of applied and numerical case studies including bioprocess optimization and reactor geometry design, demonstrating that even in the case of an uninformed practitioner our algorithm recovers the regret of standard Bayesian optimization. Through the inclusion of continuous expert opinion, our approach enables faster convergence, and improved accountability for Bayesian optimization in engineering systems.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Expert-guided Bayesian Optimisation for Human-in-the-loop Experimental
Design of Known Systems [0.0]
We apply high- throughput (batch) Bayesian optimisation alongside anthropological decision theory to enable domain experts to influence the selection of optimal experiments.
Our methodology exploits the hypothesis that humans are better at making discrete choices than continuous ones and enables experts to influence critical early decisions.
arXiv Detail & Related papers (2023-12-05T16:09:31Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Optimizer Amalgamation [124.33523126363728]
We are motivated to study a new problem named Amalgamation: how can we best combine a pool of "teacher" amalgamations into a single "student" that can have stronger problem-specific performance?
First, we define three differentiable mechanisms to amalgamate a pool of analyticals by gradient descent.
In order to reduce variance of the process, we also explore methods to stabilize the process by perturbing the target.
arXiv Detail & Related papers (2022-03-12T16:07:57Z) - Upper Trust Bound Feasibility Criterion for Mixed Constrained Bayesian
Optimization with Application to Aircraft Design [41.74498230885008]
We adapt the so-called super effcient global optimization algorithm to solve more accurately mixed constrained problems.
We show the good potential of the approach on a set of numerical experiments.
arXiv Detail & Related papers (2020-05-11T12:59:09Z) - Incorporating Expert Prior Knowledge into Experimental Design via
Posterior Sampling [58.56638141701966]
Experimenters can often acquire the knowledge about the location of the global optimum.
It is unknown how to incorporate the expert prior knowledge about the global optimum into Bayesian optimization.
An efficient Bayesian optimization approach has been proposed via posterior sampling on the posterior distribution of the global optimum.
arXiv Detail & Related papers (2020-02-26T01:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.