論文の概要: Unpaired Image Super-Resolution using Pseudo-Supervision
- arxiv url: http://arxiv.org/abs/2002.11397v1
- Date: Wed, 26 Feb 2020 10:30:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 15:36:13.620425
- Title: Unpaired Image Super-Resolution using Pseudo-Supervision
- Title(参考訳): 擬似スーパービジョンを用いた未ペア画像超解像
- Authors: Shunta Maeda
- Abstract要約: 生成逆数ネットワークを用いた非対位画像超解像(SR)手法を提案する。
我々のネットワークは、未ペアカーネル/ノイズ補正ネットワークと擬ペアSRネットワークで構成されている。
多様なデータセットに対する実験により,提案手法は未ペアSR問題に対する既存の解よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 12.18340575383456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In most studies on learning-based image super-resolution (SR), the paired
training dataset is created by downscaling high-resolution (HR) images with a
predetermined operation (e.g., bicubic). However, these methods fail to
super-resolve real-world low-resolution (LR) images, for which the degradation
process is much more complicated and unknown. In this paper, we propose an
unpaired SR method using a generative adversarial network that does not require
a paired/aligned training dataset. Our network consists of an unpaired
kernel/noise correction network and a pseudo-paired SR network. The correction
network removes noise and adjusts the kernel of the inputted LR image; then,
the corrected clean LR image is upscaled by the SR network. In the training
phase, the correction network also produces a pseudo-clean LR image from the
inputted HR image, and then a mapping from the pseudo-clean LR image to the
inputted HR image is learned by the SR network in a paired manner. Because our
SR network is independent of the correction network, well-studied existing
network architectures and pixel-wise loss functions can be integrated with the
proposed framework. Experiments on diverse datasets show that the proposed
method is superior to existing solutions to the unpaired SR problem.
- Abstract(参考訳): 学習に基づく画像超解像(SR)のほとんどの研究において、ペア化されたトレーニングデータセットは、所定の操作(例えばバイキュビック)で高解像度(HR)画像をダウンスケールすることで作成される。
しかし、これらの手法は、分解過程がより複雑で未知である実世界の低解像度(LR)画像を超解けない。
本稿では,ペア/アライントレーニングデータセットを必要としない生成型逆ネットワークを用いた非ペア型sr手法を提案する。
本ネットワークは,非ペア化カーネル/ノイズ補正ネットワークと擬似ペア化srネットワークからなる。
補正ネットワークは、ノイズを除去し、入力されたLR画像のカーネルを調整し、修正されたクリーンLR画像はSRネットワークによってアップスケールされる。
トレーニングフェーズでは、入力されたHR画像から疑似クリーンLR画像も生成し、入力されたHR画像への擬似クリーンLR画像からのマッピングをSRネットワークによりペア方式で学習する。
我々のSRネットワークは補正ネットワークとは無関係であるため、既存のネットワークアーキテクチャや画素単位の損失関数を提案フレームワークに統合することができる。
多様なデータセットに関する実験は、提案手法が既存のsr問題の解よりも優れていることを示している。
関連論文リスト
- A Heterogeneous Dynamic Convolutional Neural Network for Image
Super-resolution [111.97970576223622]
画像超解像(HDSRNet)における異種動的畳み込みネットワークを提案する。
下位のネットワークは対称アーキテクチャを使用して、異なるレイヤの関係を強化し、より構造的な情報をマイニングする。
実験結果から,HDSRNetは画像解決に有効であることが示唆された。
論文 参考訳(メタデータ) (2024-02-24T03:44:06Z) - Learning Many-to-Many Mapping for Unpaired Real-World Image
Super-resolution and Downscaling [60.80788144261183]
実世界のLR画像とHR画像の双方向多対多マッピングを教師なしで同時に学習するSDFlowと呼ばれる画像ダウンスケーリングとSRモデルを提案する。
実世界の画像SRデータセットによる実験結果から,SDFlowは定量的かつ定性的に,多様な現実的なLRとSRの画像を生成可能であることが示唆された。
論文 参考訳(メタデータ) (2023-10-08T01:48:34Z) - Knowledge Distillation based Degradation Estimation for Blind
Super-Resolution [146.0988597062618]
Blind画像超解像(Blind-SR)は、対応する低解像度(LR)入力画像から高解像度(HR)画像を未知の劣化で復元することを目的としている。
劣化推定器のトレーニングを監督するために、複数の劣化組合せの具体的なラベルを提供することは不可能である。
本稿では,知識蒸留に基づく暗黙劣化推定ネットワーク(KD-IDE)と効率的なSRネットワークを提案する。
論文 参考訳(メタデータ) (2022-11-30T11:59:07Z) - Unsupervised Representation Learning for 3D MRI Super Resolution with Degradation Adaptation [28.296921790037725]
高分解能(HR)磁気共鳴イメージングは、診断や画像誘導治療において医師を支援する上で重要である。
深層学習に基づく超解像再構成(SRR)は、低分解能(LR)画像から超解像(SR)画像を生成するための有望な解決策として登場した。
このようなニューラルネットワークのトレーニングには、画像取得中と画像取得間の患者の動きのために取得が困難である、整列したHRとLRイメージペアが必要である。
論文 参考訳(メタデータ) (2022-05-13T21:07:26Z) - LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single
Image Super-Resolution and Beyond [75.37541439447314]
単一画像超解像(SISR)は、低解像度(LR)画像を高解像度(HR)バージョンにアップサンプリングする根本的な問題を扱う。
本稿では,線形組立画素適応回帰ネットワーク (LAPAR) を提案する。
論文 参考訳(メタデータ) (2021-05-21T15:47:18Z) - Super-Resolution of Real-World Faces [3.4376560669160394]
実の低解像度 (LR) の顔画像は、変わらず複雑で既知のダウンサンプリングカーネルによってキャプチャされる劣化を含んでいる。
本稿では,特徴抽出モジュールがLR画像からロバストな特徴を抽出する2つのモジュール超解像ネットワークを提案する。
我々は、劣化GANを訓練し、双対的に縮小されたクリーン画像を実際の劣化画像に変換し、得られた劣化LR画像と、そのクリーンLR画像とを補間する。
論文 参考訳(メタデータ) (2020-11-04T17:25:54Z) - Deep Cyclic Generative Adversarial Residual Convolutional Networks for
Real Image Super-Resolution [20.537597542144916]
我々は、LRとHRデータ分布間の領域整合性を維持するために、深い循環ネットワーク構造を考える。
本稿では,LRからHRドメインへの変換のためのGAN(Generative Adversarial Network)フレームワークを用いた学習により,超解像残留周期生成逆ネットワーク(SRResCycGAN)を提案する。
論文 参考訳(メタデータ) (2020-09-07T11:11:18Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
我々は,超解像残差畳み込み生成共役ネットワーク(SRResCGAN)を提案する。
これは、生成したLRドメインからHRドメインの画素単位の監督でモデルを逆トレーニングすることで、現実世界の劣化設定に従う。
提案するネットワークは,画像の高精細化と凸最適化によるエネルギーベース目的関数の最小化により,残差学習を利用する。
論文 参考訳(メタデータ) (2020-05-03T00:12:38Z) - DDet: Dual-path Dynamic Enhancement Network for Real-World Image
Super-Resolution [69.2432352477966]
実画像超解像(Real-SR)は、実世界の高分解能画像(HR)と低分解能画像(LR)の関係に焦点を当てている。
本稿では,Real-SRのためのデュアルパス動的拡張ネットワーク(DDet)を提案する。
特徴表現のための大規模な畳み込みブロックを積み重ねる従来の手法とは異なり、非一貫性のある画像対を研究するためのコンテンツ認識フレームワークを導入する。
論文 参考訳(メタデータ) (2020-02-25T18:24:51Z) - Learning to Zoom-in via Learning to Zoom-out: Real-world
Super-resolution by Generating and Adapting Degradation [91.40265983636839]
本稿では,SR を任意の LR と HR 画像から学習するためのフレームワークを提案する。
我々は、劣化適応SRネットワークを学習しながら、生成されたデータと実データとの差を最小限にする。
提案手法は,ペア学習法をより好むデータセットであっても,実世界の画像上での最先端のSR結果を実現する。
論文 参考訳(メタデータ) (2020-01-08T05:17:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。