Wavelet-based temporal models of human activity for anomaly detection in
smart robot-assisted environments
- URL: http://arxiv.org/abs/2002.11503v3
- Date: Mon, 22 Jan 2024 15:09:42 GMT
- Title: Wavelet-based temporal models of human activity for anomaly detection in
smart robot-assisted environments
- Authors: Manuel Fernandez-Carmona, Sariah Mghames and Nicola Bellotto
- Abstract summary: This paper presents a new approach for temporal modelling of long-term human activities with smart-home sensors.
The model is based on wavelet transforms and used to forecast smart sensor data, providing a temporal prior to detect unexpected events in human environments.
- Score: 2.299866262521074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Abstract. Detecting anomalies in patterns of sensor data is important in many
practical applications, including domestic activity monitoring for Active
Assisted Living (AAL). How to represent and analyse these patterns, however,
remains a challenging task, especially when data is relatively scarce and an
explicit model is required to be fine-tuned for specific scenarios. This paper,
therefore, presents a new approach for temporal modelling of long-term human
activities with smart-home sensors, which is used to detect anomalous
situations in a robot-assisted environment. The model is based on wavelet
transforms and used to forecast smart sensor data, providing a temporal prior
to detect unexpected events in human environments. To this end, a new extension
of Hybrid Markov Logic Networks has been developed that merges different
anomaly indicators, including activities detected by binary sensors, expert
logic rules, and wavelet-based temporal models. The latter in particular allows
the inference system to discover deviations from long-term activity patterns,
which cannot be detected by simpler frequency-based models. Two new publicly
available datasets were collected using several smart-sensors to evaluate the
approach in office and domestic scenarios. The experimental results demonstrate
the effectiveness of the proposed solutions and their successful deployment in
complex human environments, showing their potential for future smart-home and
robot integrated services.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - Modeling Randomly Observed Spatiotemporal Dynamical Systems [7.381752536547389]
Currently available neural network-based modeling approaches fall short when faced with data collected randomly over time and space.
In response, we developed a new method that effectively handles such randomly sampled data.
Our model integrates techniques from amortized variational inference, neural differential equations, neural point processes, and implicit neural representations to predict both the dynamics of the system and the timings and locations of future observations.
arXiv Detail & Related papers (2024-06-01T09:03:32Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Smart Meter Data Anomaly Detection using Variational Recurrent
Autoencoders with Attention [0.0]
This paper proposes an unsupervised anomaly detection method based on a Variational Recurrent Autoencoder with attention mechanism.
With "dirty" data from smart meters, our method pre-detects missing values and global anomalies to shrink their contribution while training.
arXiv Detail & Related papers (2022-06-08T19:39:51Z) - Proactive Anomaly Detection for Robot Navigation with Multi-Sensor
Fusion [7.293053431456775]
Mobile robots produce anomalous behaviors that can lead to navigation failures.
Reactive anomaly detection methods identify anomalous task executions based on the current robot state.
We propose a proactive anomaly detection network (PAAD) for robot navigation in unstructured and uncertain environments.
arXiv Detail & Related papers (2022-04-03T19:48:40Z) - Self-awareness in intelligent vehicles: Feature based dynamic Bayesian
models for abnormality detection [4.251384905163326]
This paper aims to introduce a novel method to develop self-awareness in autonomous vehicles.
Time-series data from the vehicles are used to develop the data-driven Dynamic Bayesian Network (DBN) models.
An initial level collective awareness model that can perform joint anomaly detection in co-operative tasks is proposed.
arXiv Detail & Related papers (2020-10-29T09:29:47Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Human Activity Recognition from Wearable Sensor Data Using
Self-Attention [2.9023633922848586]
We present a self-attention based neural network model for activity recognition from body-worn sensor data.
We performed experiments on four popular publicly available HAR datasets: PAMAP2, Opportunity, Skoda and USC-HAD.
Our model achieve significant performance improvement over recent state-of-the-art models in both benchmark test subjects and Leave-one-out-subject evaluation.
arXiv Detail & Related papers (2020-03-17T14:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.