Scaling Wearable Foundation Models
- URL: http://arxiv.org/abs/2410.13638v1
- Date: Thu, 17 Oct 2024 15:08:21 GMT
- Title: Scaling Wearable Foundation Models
- Authors: Girish Narayanswamy, Xin Liu, Kumar Ayush, Yuzhe Yang, Xuhai Xu, Shun Liao, Jake Garrison, Shyam Tailor, Jake Sunshine, Yun Liu, Tim Althoff, Shrikanth Narayanan, Pushmeet Kohli, Jiening Zhan, Mark Malhotra, Shwetak Patel, Samy Abdel-Ghaffar, Daniel McDuff,
- Abstract summary: We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
- Score: 54.93979158708164
- License:
- Abstract: Wearable sensors have become ubiquitous thanks to a variety of health tracking features. The resulting continuous and longitudinal measurements from everyday life generate large volumes of data; however, making sense of these observations for scientific and actionable insights is non-trivial. Inspired by the empirical success of generative modeling, where large neural networks learn powerful representations from vast amounts of text, image, video, or audio data, we investigate the scaling properties of sensor foundation models across compute, data, and model size. Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM, a multimodal foundation model built on the largest wearable-signals dataset with the most extensive range of sensor modalities to date. Our results establish the scaling laws of LSM for tasks such as imputation, interpolation and extrapolation, both across time and sensor modalities. Moreover, we highlight how LSM enables sample-efficient downstream learning for tasks like exercise and activity recognition.
Related papers
- DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - Temporally Multi-Scale Sparse Self-Attention for Physical Activity Data Imputation [25.76458454501612]
We study the problem of imputation of missing step count data, one of the most ubiquitous forms of wearable sensor data.
We construct a novel and large scale data set consisting of a training set with over 3 million hourly step count observations and a test set with over 2.5 million hourly step count observations.
We propose a domain knowledge-informed sparse self-attention model for this task that captures the temporal multi-scale nature of step-count data.
arXiv Detail & Related papers (2024-06-27T02:38:25Z) - Daily Physical Activity Monitoring -- Adaptive Learning from Multi-source Motion Sensor Data [17.604797095380114]
In healthcare applications, there is a growing need to develop machine learning models that use data from a single source, such as from a wrist wearable device.
However, the limitation of using single-source data often compromises the model's accuracy, as it fails to capture the full scope of human activities.
We introduce a transfer learning framework that optimize machine learning models for everyday applications by leveraging multi-source data collected in a laboratory setting.
arXiv Detail & Related papers (2024-05-26T01:08:28Z) - LiveHPS: LiDAR-based Scene-level Human Pose and Shape Estimation in Free
Environment [59.320414108383055]
We present LiveHPS, a novel single-LiDAR-based approach for scene-level human pose and shape estimation.
We propose a huge human motion dataset, named FreeMotion, which is collected in various scenarios with diverse human poses.
arXiv Detail & Related papers (2024-02-27T03:08:44Z) - Latent Temporal Flows for Multivariate Analysis of Wearables Data [0.9990687944474738]
We introduce Latent Temporal Flows, a method for multivariate time-series modeling tailored to this setting.
We show that the proposed method consistently outperforms the state-of-the-art in multi-step forecasting benchmarks.
arXiv Detail & Related papers (2022-10-14T02:54:34Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
We argue that traditional methods have rarely made use of both times-series dynamics of the data as well as the relatedness of the features from different sensors.
We propose a model, termed as DynImp, to handle different time point's missingness with nearest neighbors along feature axis.
We show that the method can exploit the multi-modality features from related sensors and also learn from history time-series dynamics to reconstruct the data under extreme missingness.
arXiv Detail & Related papers (2022-09-26T21:59:14Z) - Human Activity Recognition on wrist-worn accelerometers using
self-supervised neural networks [0.0]
Measures of Activity of Daily Living (ADL) are an important indicator of overall health but difficult to measure in-clinic.
We propose a self-supervised learning paradigm to create a robust representation of accelerometer data that can generalize across devices and subjects.
We also propose a segmentation algorithm which can identify segments of salient activity and boost HAR accuracy on continuous real-life data.
arXiv Detail & Related papers (2021-12-22T23:35:20Z) - DeepTimeAnomalyViz: A Tool for Visualizing and Post-processing Deep
Learning Anomaly Detection Results for Industrial Time-Series [88.12892448747291]
We introduce the DeTAVIZ interface, which is a web browser based visualization tool for quick exploration and assessment of feasibility of DL based anomaly detection in a given problem.
DeTAVIZ allows the user to easily and quickly iterate through multiple post processing options and compare different models, and allows for manual optimisation towards a chosen metric.
arXiv Detail & Related papers (2021-09-21T10:38:26Z) - Learning Generalizable Physiological Representations from Large-scale
Wearable Data [12.863826659440026]
We present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels.
We show that the resulting embeddings can generalize in various downstream tasks through transfer learning with linear classifiers.
Overall, we propose the first multimodal self-supervised method for behavioral and physiological data with implications for large-scale health and lifestyle monitoring.
arXiv Detail & Related papers (2020-11-09T17:56:03Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.