論文の概要: The Differentially Private Lottery Ticket Mechanism
- arxiv url: http://arxiv.org/abs/2002.11613v1
- Date: Sun, 16 Feb 2020 06:15:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 17:50:37.091296
- Title: The Differentially Private Lottery Ticket Mechanism
- Title(参考訳): 別々にプライベートな宝くじの仕組み
- Authors: Lovedeep Gondara, Ke Wang, Ricardo Silva Carvalho
- Abstract要約: 微分プライベート抽選チケット機構(DPLTM)を提案する。
カスタムスコア機能によって選択された“高品質な勝者”を使用して、DPLTMはプライバシとユーティリティのトレードオフを大幅に改善します。
DPLTMはより早く収束し、プライバシー予算の消費を減らして早期に停止できることを示す。
- 参考スコア(独自算出の注目度): 4.450245285448125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the differentially private lottery ticket mechanism (DPLTM). An
end-to-end differentially private training paradigm based on the lottery ticket
hypothesis. Using "high-quality winners", selected via our custom score
function, DPLTM significantly improves the privacy-utility trade-off over the
state-of-the-art. We show that DPLTM converges faster, allowing for early
stopping with reduced privacy budget consumption. We further show that the
tickets from DPLTM are transferable across datasets, domains, and
architectures. Our extensive evaluation on several public datasets provides
evidence to our claims.
- Abstract(参考訳): 本稿では,DPLTM(differentially private lottery ticket mechanism)を提案する。
抽選券仮説に基づくエンド・ツー・エンドの差動的プライベートトレーニングパラダイム
カスタムスコア機能によって選択された“高品質な勝者”を使用することで、DPLTMは最先端技術に対するプライバシユーティリティのトレードオフを大幅に改善します。
DPLTMはより早く収束し、プライバシー予算の消費を減らして早期に停止できることを示す。
さらに、DPLTMのチケットはデータセット、ドメイン、アーキテクチャ間で転送可能であることを示す。
いくつかの公開データセットに対する我々の広範な評価は、我々の主張に証拠を与える。
関連論文リスト
- DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning using Packed Secret Sharing [51.336015600778396]
フェデレーテッド・ラーニング(FL)は最近、産業とアカデミックの両方で多くの注目を集めています。
FLでは、機械学習モデルは、複数のラウンドにまたがって委員会に配置されたさまざまなエンドユーザのデータを使用して訓練される。
このようなデータは、しばしばセンシティブであるため、FLの主な課題は、モデルの実用性を維持しながらプライバシを提供することである。
論文 参考訳(メタデータ) (2024-10-21T16:25:14Z) - Beyond the Mean: Differentially Private Prototypes for Private Transfer Learning [16.028575596905554]
本稿では,個人間移動学習の新たなパラダイムとして,DPPL(differially Private Prototype Learning)を提案する。
DPPLは、埋め込み空間内の各プライベートクラスを表すプロトタイプを生成し、推論のために公開することができる。
エンコーダの事前トレーニング以上の公開データを活用すれば,プライバシユーティリティのトレードオフをさらに改善できることを示す。
論文 参考訳(メタデータ) (2024-06-12T09:41:12Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - Summary Statistic Privacy in Data Sharing [23.50797952699759]
本研究では,データ配信の要約統計を明らかにすることなく,データ保持者が受信者とデータを共有したい状況について検討する。
このようなメカニズムのプライバシーリスクを定量化するための指標である統計プライバシーの要約を提案する。
提案した量子化メカニズムは、代替プライバシメカニズムよりも優れたプライバシー歪曲トレードオフを実現する。
論文 参考訳(メタデータ) (2023-03-03T15:29:19Z) - Differentially Private Neural Tangent Kernels for Privacy-Preserving
Data Generation [32.83436754714798]
本研究は,$textitneural tangent kernels (NTKs)$,より正確には$textitempirical$ NTKs (e-NTKs) の機能の利用を検討する。
おそらく意外なことに、トレーニングされていないe-NTK機能の表現力は、公開データを使って事前トレーニングされた知覚機能から得られる機能と同等である。
論文 参考訳(メタデータ) (2023-03-03T03:00:49Z) - Multi-Message Shuffled Privacy in Federated Learning [2.6778110563115542]
本稿では,通信制約下での分散最適化について検討する。
最適化にSGDを用いたサーバは、分散平均推定(DME)を用いたモデル更新のためのクライアント側局所勾配を集約する
最近開発されたMMS(Multi-message shuffled)プライバシーフレームワークを用いて,通信効率の良いプライベートDMEを開発する。
論文 参考訳(メタデータ) (2023-02-22T05:23:52Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - VFed-SSD: Towards Practical Vertical Federated Advertising [53.08038962443853]
本稿では,2つの制限を緩和する半教師付き分割蒸留フレームワーク VFed-SSD を提案する。
具体的には,垂直分割された未ラベルデータを利用する自己教師型タスクMatchedPair Detection (MPD) を開発する。
当社のフレームワークは,デプロイコストの最小化と大幅なパフォーマンス向上を図った,リアルタイム表示広告のための効率的なフェデレーション強化ソリューションを提供する。
論文 参考訳(メタデータ) (2022-05-31T17:45:30Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
そこで我々はDP-Sinkhornを提案する。DP-Sinkhornは個人データからデータ分布を差分プライバシで学習するための新しいトランスポートベース生成手法である。
差分的にプライベートな生成モデルを訓練するための既存のアプローチとは異なり、我々は敵の目的に頼らない。
論文 参考訳(メタデータ) (2021-11-01T18:10:21Z) - LotteryFL: Personalized and Communication-Efficient Federated Learning
with Lottery Ticket Hypothesis on Non-IID Datasets [52.60094373289771]
フェデレーション学習は、プライバシーを強化した、人気のある分散機械学習パラダイムである。
パーソナライズされたコミュニケーション効率の高いフェデレーション学習フレームワークであるLotteryFLを提案する。
LotteryFLはパーソナライズと通信コストの点で既存のソリューションよりも優れています。
論文 参考訳(メタデータ) (2020-08-07T20:45:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。