Weak Supervision in Convolutional Neural Network for Semantic
Segmentation of Diffuse Lung Diseases Using Partially Annotated Dataset
- URL: http://arxiv.org/abs/2002.11936v2
- Date: Thu, 26 Mar 2020 11:04:49 GMT
- Title: Weak Supervision in Convolutional Neural Network for Semantic
Segmentation of Diffuse Lung Diseases Using Partially Annotated Dataset
- Authors: Yuki Suzuki, Kazuki Yamagata, Yanagawa Masahiro, Shoji Kido, Noriyuki
Tomiyama
- Abstract summary: We develop semantic segmentation model for 5 kinds of lung diseases.
DLDs considered in this work are consolidation, ground glass opacity, honeycombing, emphysema, and normal.
We propose a new weak supervision technique that effectively utilizes partially annotated dataset.
- Score: 2.239917051803692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer-aided diagnosis system for diffuse lung diseases (DLDs) is necessary
for the objective assessment of the lung diseases. In this paper, we develop
semantic segmentation model for 5 kinds of DLDs. DLDs considered in this work
are consolidation, ground glass opacity, honeycombing, emphysema, and normal.
Convolutional neural network (CNN) is one of the most promising technique for
semantic segmentation among machine learning algorithms. While creating
annotated dataset for semantic segmentation is laborious and time consuming,
creating partially annotated dataset, in which only one chosen class is
annotated for each image, is easier since annotators only need to focus on one
class at a time during the annotation task. In this paper, we propose a new
weak supervision technique that effectively utilizes partially annotated
dataset. The experiments using partially annotated dataset composed 372 CT
images demonstrated that our proposed technique significantly improved
segmentation accuracy.
Related papers
- GenSelfDiff-HIS: Generative Self-Supervision Using Diffusion for Histopathological Image Segmentation [5.049466204159458]
Self-supervised learning (SSL) is an alternative paradigm that provides some respite by constructing models utilizing only the unannotated data.
In this paper, we propose an SSL approach for segmenting histopathological images via generative diffusion models.
Our method is based on the observation that diffusion models effectively solve an image-to-image translation task akin to a segmentation task.
arXiv Detail & Related papers (2023-09-04T09:49:24Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - DIAS: A Dataset and Benchmark for Intracranial Artery Segmentation in DSA sequences [19.61593883367223]
Intracranial Arteries (IA) in Digital Subtraction Angiography (DSA) plays a crucial role in the quantification of vascular morphology.
Current research primarily focuses on the segmentation of single-frame DSA using proprietary datasets.
We introduce DIAS, a dataset specifically developed for IA segmentation in DSA sequences.
arXiv Detail & Related papers (2023-06-21T10:03:56Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Temporally Constrained Neural Networks (TCNN): A framework for
semi-supervised video semantic segmentation [5.0754434714665715]
We present Temporally Constrained Neural Networks (TCNN), a semi-supervised framework used for video semantic segmentation of surgical videos.
In this work, we show that autoencoder networks can be used to efficiently provide both spatial and temporal supervisory signals.
We demonstrate that lower-dimensional representations of predicted masks can be leveraged to provide a consistent improvement on both sparsely labeled datasets.
arXiv Detail & Related papers (2021-12-27T18:06:12Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z) - A generic ensemble based deep convolutional neural network for
semi-supervised medical image segmentation [7.141405427125369]
We propose a generic semi-supervised learning framework for image segmentation based on a deep convolutional neural network (DCNN)
Our method is able to significantly improve beyond fully supervised model learning by incorporating unlabeled data.
arXiv Detail & Related papers (2020-04-16T23:41:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.