Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding
- URL: http://arxiv.org/abs/2012.05440v1
- Date: Thu, 10 Dec 2020 04:01:07 GMT
- Title: Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding
- Authors: Liyan Sun, Chenxin Li, Xinghao Ding, Yue Huang, Guisheng Wang and
Yizhou Yu
- Abstract summary: We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
- Score: 60.89561661441736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite deep convolutional neural networks achieved impressive progress in
medical image computing and analysis, its paradigm of supervised learning
demands a large number of annotations for training to avoid overfitting and
achieving promising results. In clinical practices, massive semantic
annotations are difficult to acquire in some conditions where specialized
biomedical expert knowledge is required, and it is also a common condition
where only few annotated classes are available. In this work, we proposed a
novel method for few-shot medical image segmentation, which enables a
segmentation model to fast generalize to an unseen class with few training
images. We construct our few-shot image segmentor using a deep convolutional
network trained episodically. Motivated by the spatial consistency and
regularity in medical images, we developed an efficient global correlation
module to capture the correlation between a support and query image and
incorporate it into the deep network called global correlation network.
Moreover, we enhance discriminability of deep embedding to encourage clustering
of the feature domains of the same class while keep the feature domains of
different organs far apart. Ablation Study proved the effectiveness of the
proposed global correlation module and discriminative embedding loss. Extensive
experiments on anatomical abdomen images on both CT and MRI modalities are
performed to demonstrate the state-of-the-art performance of our proposed
model.
Related papers
- Applying Conditional Generative Adversarial Networks for Imaging Diagnosis [3.881664394416534]
This study introduces an innovative application of Conditional Generative Adversarial Networks (C-GAN) integrated with Stacked Hourglass Networks (SHGN)
We address the problem of overfitting, common in deep learning models applied to complex imaging datasets, by augmenting data through rotation and scaling.
A hybrid loss function combining L1 and L2 reconstruction losses, enriched with adversarial training, is introduced to refine segmentation processes in intravascular ultrasound (IVUS) imaging.
arXiv Detail & Related papers (2024-07-17T23:23:09Z) - Few-shot Medical Image Segmentation with Cycle-resemblance Attention [20.986884555902183]
Few-shot learning has gained increasing attention in the medical image semantic segmentation field.
In this paper, we propose a novel self-supervised few-shot medical image segmentation network.
We introduce a novel Cycle-Resemblance Attention (CRA) module to fully leverage the pixel-wise relation between query and support medical images.
arXiv Detail & Related papers (2022-12-07T21:55:26Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Generalizable multi-task, multi-domain deep segmentation of sparse
pediatric imaging datasets via multi-scale contrastive regularization and
multi-joint anatomical priors [0.41998444721319217]
We propose to design a novel multi-task, multi-domain learning framework in which a single segmentation network is optimized over multiple datasets.
We evaluate our contributions for performing bone segmentation using three scarce and pediatric imaging datasets of the ankle, knee, and shoulder joints.
arXiv Detail & Related papers (2022-07-27T12:59:16Z) - Cross-level Contrastive Learning and Consistency Constraint for
Semi-supervised Medical Image Segmentation [46.678279106837294]
We propose a cross-level constrastive learning scheme to enhance representation capacity for local features in semi-supervised medical image segmentation.
With the help of the cross-level contrastive learning and consistency constraint, the unlabelled data can be effectively explored to improve segmentation performance.
arXiv Detail & Related papers (2022-02-08T15:12:11Z) - Multimodal Transfer Learning-based Approaches for Retinal Vascular
Segmentation [2.672151045393935]
The study of the retinal microcirculation is a key issue in the analysis of many ocular and systemic diseases, like hypertension or diabetes.
FCNs usually represent the most successful approach to image segmentation.
In this work, we present multimodal transfer learning-based approaches for retinal vascular segmentation.
arXiv Detail & Related papers (2020-12-18T10:38:35Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.