Meta-Learned Confidence for Few-shot Learning
- URL: http://arxiv.org/abs/2002.12017v2
- Date: Wed, 24 Jun 2020 14:13:47 GMT
- Title: Meta-Learned Confidence for Few-shot Learning
- Authors: Seong Min Kye, Hae Beom Lee, Hoirin Kim, and Sung Ju Hwang
- Abstract summary: A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
- Score: 60.6086305523402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transductive inference is an effective means of tackling the data deficiency
problem in few-shot learning settings. A popular transductive inference
technique for few-shot metric-based approaches, is to update the prototype of
each class with the mean of the most confident query examples, or
confidence-weighted average of all the query samples. However, a caveat here is
that the model confidence may be unreliable, which may lead to incorrect
predictions. To tackle this issue, we propose to meta-learn the confidence for
each query sample, to assign optimal weights to unlabeled queries such that
they improve the model's transductive inference performance on unseen tasks. We
achieve this by meta-learning an input-adaptive distance metric over a task
distribution under various model and data perturbations, which will enforce
consistency on the model predictions under diverse uncertainties for unseen
tasks. Moreover, we additionally suggest a regularization which explicitly
enforces the consistency on the predictions across the different dimensions of
a high-dimensional embedding vector. We validate our few-shot learning model
with meta-learned confidence on four benchmark datasets, on which it largely
outperforms strong recent baselines and obtains new state-of-the-art results.
Further application on semi-supervised few-shot learning tasks also yields
significant performance improvements over the baselines. The source code of our
algorithm is available at https://github.com/seongmin-kye/MCT.
Related papers
- Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach [0.18641315013048293]
This paper proposes adapting an established model-agnostic meta-learning algorithm for short-term load forecasting.
The proposed method can rapidly adapt and generalize within any unknown load time series of arbitrary length.
The proposed model is evaluated using a dataset of historical load consumption data from real-world consumers.
arXiv Detail & Related papers (2024-06-09T18:59:08Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
We study the problem of test time robustification, i.e., using the test input to improve model robustness.
Recent prior works have proposed methods for test time adaptation, however, they each introduce additional assumptions.
We propose a simple approach that can be used in any test setting where the model is probabilistic and adaptable.
arXiv Detail & Related papers (2021-10-18T17:55:11Z) - Confidence Estimation via Auxiliary Models [47.08749569008467]
We introduce a novel target criterion for model confidence, namely the true class probability ( TCP)
We show that TCP offers better properties for confidence estimation than standard maximum class probability (MCP)
arXiv Detail & Related papers (2020-12-11T17:21:12Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.