Task-Distributionally Robust Data-Free Meta-Learning
- URL: http://arxiv.org/abs/2311.14756v1
- Date: Thu, 23 Nov 2023 15:46:54 GMT
- Title: Task-Distributionally Robust Data-Free Meta-Learning
- Authors: Zixuan Hu, Li Shen, Zhenyi Wang, Yongxian Wei, Baoyuan Wu, Chun Yuan,
Dacheng Tao
- Abstract summary: Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
- Score: 99.56612787882334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by
leveraging multiple pre-trained models without requiring their original
training data. Existing inversion-based DFML methods construct pseudo tasks
from a learnable dataset, which is inversely generated from the pre-trained
model pool. For the first time, we reveal two major challenges hindering their
practical deployments: Task-Distribution Shift (TDS) and Task-Distribution
Corruption (TDC). TDS leads to a biased meta-learner because of the skewed task
distribution towards newly generated tasks. TDC occurs when untrusted models
characterized by misleading labels or poor quality pollute the task
distribution. To tackle these issues, we introduce a robust DFML framework that
ensures task distributional robustness. We propose to meta-learn from a pseudo
task distribution, diversified through task interpolation within a compact
task-memory buffer. This approach reduces the meta-learner's overreliance on
newly generated tasks by maintaining consistent performance across a broader
range of interpolated memory tasks, thus ensuring its generalization for unseen
tasks. Additionally, our framework seamlessly incorporates an automated model
selection mechanism into the meta-training phase, parameterizing each model's
reliability as a learnable weight. This is optimized with a policy gradient
algorithm inspired by reinforcement learning, effectively addressing the
non-differentiable challenge posed by model selection. Comprehensive
experiments across various datasets demonstrate the framework's effectiveness
in mitigating TDS and TDC, underscoring its potential to improve DFML in
real-world scenarios.
Related papers
- MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
We propose textbfModel textbfExclusive textbfTask textbfArithmetic for merging textbfGPT-scale models.
Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.
arXiv Detail & Related papers (2024-06-17T10:12:45Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - Meta-Reinforcement Learning Based on Self-Supervised Task Representation
Learning [23.45043290237396]
MoSS is a context-based Meta-reinforcement learning algorithm based on Self-Supervised task representation learning.
On MuJoCo and Meta-World benchmarks, MoSS outperforms prior in terms of performance, sample efficiency (3-50x faster), adaptation efficiency, and generalization.
arXiv Detail & Related papers (2023-04-29T15:46:19Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
We propose a memory imitation meta-learning (MemIML) method that enhances the model's reliance on support sets for task adaptation.
A theoretical analysis is provided to prove the effectiveness of our method.
arXiv Detail & Related papers (2022-03-22T12:41:55Z) - ST-MAML: A Stochastic-Task based Method for Task-Heterogeneous
Meta-Learning [12.215288736524268]
This paper proposes a novel method, ST-MAML, that empowers model-agnostic meta-learning (MAML) to learn from multiple task distributions.
We demonstrate that ST-MAML matches or outperforms the state-of-the-art on two few-shot image classification tasks, one curve regression benchmark, one image completion problem, and a real-world temperature prediction application.
arXiv Detail & Related papers (2021-09-27T18:54:50Z) - Meta-Regularization by Enforcing Mutual-Exclusiveness [0.8057006406834467]
We propose a regularization technique for meta-learning models that gives the model designer more control over the information flow during meta-training.
Our proposed regularization function shows an accuracy boost of $sim$ $36%$ on the Omniglot dataset.
arXiv Detail & Related papers (2021-01-24T22:57:19Z) - Model-based Adversarial Meta-Reinforcement Learning [38.28304764312512]
We propose Model-based Adversarial Meta-Reinforcement Learning (AdMRL)
AdMRL aims to minimize the worst-case sub-optimality gap across all tasks in a family of tasks.
We evaluate our approach on several continuous control benchmarks and demonstrate its efficacy in the worst-case performance over all tasks.
arXiv Detail & Related papers (2020-06-16T02:21:49Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.