Deep Randomized Neural Networks
- URL: http://arxiv.org/abs/2002.12287v2
- Date: Tue, 2 Feb 2021 15:19:10 GMT
- Title: Deep Randomized Neural Networks
- Authors: Claudio Gallicchio and Simone Scardapane
- Abstract summary: Randomized Neural Networks explore the behavior of neural systems where the majority of connections are fixed.
This chapter surveys all the major aspects regarding the design and analysis of Randomized Neural Networks.
- Score: 12.333836441649343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Randomized Neural Networks explore the behavior of neural systems where the
majority of connections are fixed, either in a stochastic or a deterministic
fashion. Typical examples of such systems consist of multi-layered neural
network architectures where the connections to the hidden layer(s) are left
untrained after initialization. Limiting the training algorithms to operate on
a reduced set of weights inherently characterizes the class of Randomized
Neural Networks with a number of intriguing features. Among them, the extreme
efficiency of the resulting learning processes is undoubtedly a striking
advantage with respect to fully trained architectures. Besides, despite the
involved simplifications, randomized neural systems possess remarkable
properties both in practice, achieving state-of-the-art results in multiple
domains, and theoretically, allowing to analyze intrinsic properties of neural
architectures (e.g. before training of the hidden layers' connections). In
recent years, the study of Randomized Neural Networks has been extended towards
deep architectures, opening new research directions to the design of effective
yet extremely efficient deep learning models in vectorial as well as in more
complex data domains. This chapter surveys all the major aspects regarding the
design and analysis of Randomized Neural Networks, and some of the key results
with respect to their approximation capabilities. In particular, we first
introduce the fundamentals of randomized neural models in the context of
feed-forward networks (i.e., Random Vector Functional Link and equivalent
models) and convolutional filters, before moving to the case of recurrent
systems (i.e., Reservoir Computing networks). For both, we focus specifically
on recent results in the domain of deep randomized systems, and (for recurrent
models) their application to structured domains.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Dynamical systems' based neural networks [0.7874708385247353]
We build neural networks using a suitable, structure-preserving, numerical time-discretisation.
The structure of the neural network is then inferred from the properties of the ODE vector field.
We present two universal approximation results and demonstrate how to impose some particular properties on the neural networks.
arXiv Detail & Related papers (2022-10-05T16:30:35Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
In science and engineering, modeling is a methodology used to understand complex systems whose internal processes are opaque.
We construct a class of surrogate models for neural networks using Gaussian processes.
We demonstrate our approach captures existing phenomena related to the spectral bias of neural networks, and then show that our surrogate models can be used to solve practical problems.
arXiv Detail & Related papers (2022-08-11T20:17:02Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
We show that dimensionality and quasi-orthogonality of neural networks' feature space may jointly serve as network's performance discriminants.
Our findings suggest important relationships between the networks' final performance and properties of their randomly initialised feature spaces.
arXiv Detail & Related papers (2022-03-30T21:47:32Z) - Learning from Randomly Initialized Neural Network Features [24.75062551820944]
We present the surprising result that randomly neural networks are good feature extractors in expectation.
These random features correspond to finite-sample realizations of what we call Neural Network Prior Kernel (NNPK), which is inherently infinite-dimensional.
arXiv Detail & Related papers (2022-02-13T23:35:11Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Expressivity of Deep Neural Networks [2.7909470193274593]
In this review paper, we give a comprehensive overview of the large variety of approximation results for neural networks.
While the mainbody of existing results is for general feedforward architectures, we also depict approximation results for convolutional, residual and recurrent neural networks.
arXiv Detail & Related papers (2020-07-09T13:08:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.