Expressivity of Deep Neural Networks
- URL: http://arxiv.org/abs/2007.04759v1
- Date: Thu, 9 Jul 2020 13:08:01 GMT
- Title: Expressivity of Deep Neural Networks
- Authors: Ingo G\"uhring, Mones Raslan, Gitta Kutyniok
- Abstract summary: In this review paper, we give a comprehensive overview of the large variety of approximation results for neural networks.
While the mainbody of existing results is for general feedforward architectures, we also depict approximation results for convolutional, residual and recurrent neural networks.
- Score: 2.7909470193274593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this review paper, we give a comprehensive overview of the large variety
of approximation results for neural networks. Approximation rates for classical
function spaces as well as benefits of deep neural networks over shallow ones
for specifically structured function classes are discussed. While the mainbody
of existing results is for general feedforward architectures, we also depict
approximation results for convolutional, residual and recurrent neural
networks.
Related papers
- On the growth of the parameters of approximating ReLU neural networks [0.542249320079018]
This work focuses on the analysis of fully connected feed forward ReLU neural networks as they approximate a given, smooth function.
In contrast to conventionally studied universal approximation properties under increasing architectures, we are concerned with the growth of the parameters of approximating networks.
arXiv Detail & Related papers (2024-06-21T07:45:28Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
Rank of neural networks measures information flowing across layers.
It is an instance of a key structural condition that applies across broad domains of machine learning.
For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear.
arXiv Detail & Related papers (2022-06-13T12:03:32Z) - Fourier Neural Networks for Function Approximation [2.840363325289377]
It is proved extensively that neural networks are universal approximators.
It is specifically proved that for a narrow neural network to approximate a function which is otherwise implemented by a deep Neural network, the network take exponentially large number of neurons.
arXiv Detail & Related papers (2021-10-21T09:30:26Z) - Theoretical Analysis of the Advantage of Deepening Neural Networks [0.0]
It is important to know the expressivity of functions computable by deep neural networks.
By the two criteria, we show that to increase layers is more effective than to increase units at each layer on improving the expressivity of deep neural networks.
arXiv Detail & Related papers (2020-09-24T04:10:50Z) - The efficiency of deep learning algorithms for detecting anatomical
reference points on radiological images of the head profile [55.41644538483948]
A U-Net neural network allows performing the detection of anatomical reference points more accurately than a fully convolutional neural network.
The results of the detection of anatomical reference points by the U-Net neural network are closer to the average results of the detection of reference points by a group of orthodontists.
arXiv Detail & Related papers (2020-05-25T13:51:03Z) - Deep Randomized Neural Networks [12.333836441649343]
Randomized Neural Networks explore the behavior of neural systems where the majority of connections are fixed.
This chapter surveys all the major aspects regarding the design and analysis of Randomized Neural Networks.
arXiv Detail & Related papers (2020-02-27T17:57:58Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
We advance the understanding of the relations between the network's architecture and its generalizability from the compression perspective.
We propose a series of intuitive, data-dependent and easily-measurable properties that tightly characterize the compressibility and generalizability of neural networks.
arXiv Detail & Related papers (2020-01-14T22:26:57Z) - Approximation smooth and sparse functions by deep neural networks
without saturation [0.6396288020763143]
In this paper, we aim at constructing deep neural networks with three hidden layers to approximate smooth and sparse functions.
We prove that the constructed deep nets can reach the optimal approximation rate in approximating both smooth and sparse functions with controllable magnitude of free parameters.
arXiv Detail & Related papers (2020-01-13T09:28:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.