Semi-Device-Independent Random Number Generation with Flexible
Assumptions
- URL: http://arxiv.org/abs/2002.12295v2
- Date: Fri, 19 Mar 2021 09:37:12 GMT
- Title: Semi-Device-Independent Random Number Generation with Flexible
Assumptions
- Authors: Matej Pivoluska, Martin Plesch, M\'at\'e Farkas, Nat\'alia
Ru\v{z}i\v{c}kov\'a, Clara Flegel, Natalia Herrera Valencia, Will McCutcheon,
Mehul Malik, Edgar A. Aguilar
- Abstract summary: We propose a new framework for semi-device-independent randomness certification using a source of trusted vacuum in the form of a signal shutter.
We experimentally demonstrate our protocol with a photonic setup and generate secure random bits under three different assumptions with varying degrees of security and resulting data rates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our ability to trust that a random number is truly random is essential for
fields as diverse as cryptography and fundamental tests of quantum mechanics.
Existing solutions both come with drawbacks -- device-independent quantum
random number generators (QRNGs) are highly impractical and standard
semi-device-independent QRNGs are limited to a specific physical implementation
and level of trust. Here we propose a new framework for semi-device-independent
randomness certification, using a source of trusted vacuum in the form of a
signal shutter. It employs a flexible set of assumptions and levels of trust,
allowing it to be applied in a wide range of physical scenarios involving both
quantum and classical entropy sources. We experimentally demonstrate our
protocol with a photonic setup and generate secure random bits under three
different assumptions with varying degrees of security and resulting data
rates.
Related papers
- Continuous-Variable Source-Independent Quantum Random Number Generator with a Single Phase-Insensitive Detector [0.5439020425819]
Quantum random number generators (QRNGs) harness quantum mechanical unpredictability to produce true randomness.
We propose a novel CV-SI-QRNG scheme with a single phase-insensitive detector, and provide security proof based on semi-definite programming (SDP)
These results demonstrate the feasibility of our framework, paving the way for practical and simple SI-QRNG implementations.
arXiv Detail & Related papers (2024-11-22T09:26:53Z) - One-Sided Device-Independent Random Number Generation Through Fiber Channels [8.825206458043452]
It is crucial to realize the one-sided device-independent random number generation based on quantum steering.
We distribute quantum steering between two distant users through a 2 km fiber channel and generate quantum random numbers at the remote station with untrustworthy device.
Our results demonstrate the first realization of steering-based random numbers extraction in a practical fiber channel.
arXiv Detail & Related papers (2024-11-13T08:51:32Z) - Existential Unforgeability in Quantum Authentication From Quantum Physical Unclonable Functions Based on Random von Neumann Measurement [45.386403865847235]
Physical Unclonable Functions (PUFs) leverage inherent, non-clonable physical randomness to generate unique input-output pairs.
Quantum PUFs (QPUFs) extend this concept by using quantum states as input-output pairs.
We show that random unitary QPUFs cannot achieve existential unforgeability against Quantum Polynomial Time adversaries.
We introduce a second model where the QPUF functions as a nonunitary quantum channel, which guarantees existential unforgeability.
arXiv Detail & Related papers (2024-04-17T12:16:41Z) - A privacy-preserving publicly verifiable quantum random number generator [48.7576911714538]
We report the implementation of an entanglement-based protocol that allows a third party to publicly perform statistical tests without compromising the privacy of the random bits.
limitations on computing power can restrict an end-user's ability to perform such verification.
arXiv Detail & Related papers (2023-05-18T12:13:48Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Practical Semi-Device Independent Randomness Generation Based on Quantum
State's Indistinguishability [0.0]
We present a proof-of-principle time-bin encoding semi-DI QRNG experiments based on a prepare-and-measure scheme.
We lower-bound the conditional min-entropy from the energy-bound and the input-output correlation, determining the amount of genuine randomness that can be certified.
arXiv Detail & Related papers (2021-04-22T15:39:36Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Source Independent Quantum Walk Random Number Generation [1.827510863075184]
Source independent quantum random number generators (SI-QRNG) are cryptographic protocols.
We analyze an SI-QRNG protocol based on quantum walks and develop a new proof technique to show security.
arXiv Detail & Related papers (2021-02-03T19:42:57Z) - Certified Randomness From Steering Using Sequential Measurements [0.0]
A single entangled two-qubit pure state can be used to produce arbitrary amounts of certified randomness.
Motivated by these difficulties in the device-independent setting, we consider the scenario of one-sided device independence.
We show how certain aspects of previous work can be adapted to this scenario and provide theoretical bounds on the amount of randomness which can be certified.
arXiv Detail & Related papers (2020-08-03T08:18:29Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.