Semi-Device-Independent Random Number Generation with Flexible
Assumptions
- URL: http://arxiv.org/abs/2002.12295v2
- Date: Fri, 19 Mar 2021 09:37:12 GMT
- Title: Semi-Device-Independent Random Number Generation with Flexible
Assumptions
- Authors: Matej Pivoluska, Martin Plesch, M\'at\'e Farkas, Nat\'alia
Ru\v{z}i\v{c}kov\'a, Clara Flegel, Natalia Herrera Valencia, Will McCutcheon,
Mehul Malik, Edgar A. Aguilar
- Abstract summary: We propose a new framework for semi-device-independent randomness certification using a source of trusted vacuum in the form of a signal shutter.
We experimentally demonstrate our protocol with a photonic setup and generate secure random bits under three different assumptions with varying degrees of security and resulting data rates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our ability to trust that a random number is truly random is essential for
fields as diverse as cryptography and fundamental tests of quantum mechanics.
Existing solutions both come with drawbacks -- device-independent quantum
random number generators (QRNGs) are highly impractical and standard
semi-device-independent QRNGs are limited to a specific physical implementation
and level of trust. Here we propose a new framework for semi-device-independent
randomness certification, using a source of trusted vacuum in the form of a
signal shutter. It employs a flexible set of assumptions and levels of trust,
allowing it to be applied in a wide range of physical scenarios involving both
quantum and classical entropy sources. We experimentally demonstrate our
protocol with a photonic setup and generate secure random bits under three
different assumptions with varying degrees of security and resulting data
rates.
Related papers
- Investigating a Device Independence Quantum Random Number Generation [4.902256682663188]
We certify randomness with the aid of quantum entanglement in a device independent setting.
The CHSH inequality violation and quantum state tomography are used as independent checks on the measurement devices.
arXiv Detail & Related papers (2024-06-03T09:23:24Z) - A privacy-preserving publicly verifiable quantum random number generator [48.7576911714538]
We report the implementation of an entanglement-based protocol that allows a third party to publicly perform statistical tests without compromising the privacy of the random bits.
limitations on computing power can restrict an end-user's ability to perform such verification.
arXiv Detail & Related papers (2023-05-18T12:13:48Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Certified Random Number Generation from Quantum Steering [1.0820909926464386]
Certified randomness protocols have been developed which remove the need for trust in devices by taking advantage of nonlocality.
Here, we use a photonic platform to implement our protocol, which operates in the quantum steering scenario.
We demonstrate an approach for a steering-based generator of public or private randomness, and the first generation of certified random bits, with the detection loophole closed.
arXiv Detail & Related papers (2021-11-18T03:49:43Z) - Practical Semi-Device Independent Randomness Generation Based on Quantum
State's Indistinguishability [0.0]
We present a proof-of-principle time-bin encoding semi-DI QRNG experiments based on a prepare-and-measure scheme.
We lower-bound the conditional min-entropy from the energy-bound and the input-output correlation, determining the amount of genuine randomness that can be certified.
arXiv Detail & Related papers (2021-04-22T15:39:36Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Source Independent Quantum Walk Random Number Generation [1.827510863075184]
Source independent quantum random number generators (SI-QRNG) are cryptographic protocols.
We analyze an SI-QRNG protocol based on quantum walks and develop a new proof technique to show security.
arXiv Detail & Related papers (2021-02-03T19:42:57Z) - Certified Randomness From Steering Using Sequential Measurements [0.0]
A single entangled two-qubit pure state can be used to produce arbitrary amounts of certified randomness.
Motivated by these difficulties in the device-independent setting, we consider the scenario of one-sided device independence.
We show how certain aspects of previous work can be adapted to this scenario and provide theoretical bounds on the amount of randomness which can be certified.
arXiv Detail & Related papers (2020-08-03T08:18:29Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.