Practical Semi-Device Independent Randomness Generation Based on Quantum
State's Indistinguishability
- URL: http://arxiv.org/abs/2104.11137v2
- Date: Tue, 4 May 2021 08:17:36 GMT
- Title: Practical Semi-Device Independent Randomness Generation Based on Quantum
State's Indistinguishability
- Authors: Hamid Tebyanian, Mujtaba Zahidy, Marco Avesani, Andrea Stanco, Paolo
Villoresi, and Giuseppe Vallone
- Abstract summary: We present a proof-of-principle time-bin encoding semi-DI QRNG experiments based on a prepare-and-measure scheme.
We lower-bound the conditional min-entropy from the energy-bound and the input-output correlation, determining the amount of genuine randomness that can be certified.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-device independent (Semi-DI) quantum random number generators (QRNG)
gained attention for security applications, offering an excellent trade-off
between security and generation rate. This paper presents a proof-of-principle
time-bin encoding semi-DI QRNG experiments based on a prepare-and-measure
scheme. The protocol requires two simple assumptions and a measurable
condition: an upper-bound on the prepared pulses' energy. We lower-bound the
conditional min-entropy from the energy-bound and the input-output correlation,
determining the amount of genuine randomness that can be certified. Moreover,
we present a generalized optimization problem for bounding the min-entropy in
the case of multiple-input and outcomes in the form of a semidefinite program
(SDP). The protocol is tested with a simple experimental setup, capable of
realizing two configurations for the ternary time-bin encoding scheme. The
experimental setup is easy-to-implement and comprises commercially available
off-the-shelf (COTS) components at the telecom wavelength, granting a secure
and certifiable entropy source. The combination of ease-of-implementation,
scalability, high-security level, and output-entropy make our system a
promising candidate for commercial QRNGs.
Related papers
- Continuous-Variable Source-Independent Quantum Random Number Generator with a Single Phase-Insensitive Detector [0.5439020425819]
Quantum random number generators (QRNGs) harness quantum mechanical unpredictability to produce true randomness.
We propose a novel CV-SI-QRNG scheme with a single phase-insensitive detector, and provide security proof based on semi-definite programming (SDP)
These results demonstrate the feasibility of our framework, paving the way for practical and simple SI-QRNG implementations.
arXiv Detail & Related papers (2024-11-22T09:26:53Z) - Existential Unforgeability in Quantum Authentication From Quantum Physical Unclonable Functions Based on Random von Neumann Measurement [45.386403865847235]
Physical Unclonable Functions (PUFs) leverage inherent, non-clonable physical randomness to generate unique input-output pairs.
Quantum PUFs (QPUFs) extend this concept by using quantum states as input-output pairs.
We show that random unitary QPUFs cannot achieve existential unforgeability against Quantum Polynomial Time adversaries.
We introduce a second model where the QPUF functions as a nonunitary quantum channel, which guarantees existential unforgeability.
arXiv Detail & Related papers (2024-04-17T12:16:41Z) - Improvements on Device Independent and Semi-Device Independent Protocols
of Randomness Expansion [0.0]
Device Independent (DI) and Semi-Device Independent (semi-DI) protocols of randomness expansion are discussed.
We introduce enhanced DI and semi-DI protocols that surpass existing ones in terms of output randomness rate, security, or in some instances, both.
A notable contribution is the introduction of randomness expansion protocols that recycle input randomness, significantly enhancing finite round randomness rates for DI protocols based on the CHSH inequality violation.
arXiv Detail & Related papers (2023-11-22T17:03:04Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Semi-Device-Independent Heterodyne-based Quantum Random Number Generator [0.0]
Quantum random number generators (QRNG) usually need to trust their devices, but their security can be jeopardized in case of imperfections or malicious external actions.
We present a robust implementation of a Semi-Device-Independent QRNG that guarantees both security and fast generation rates.
arXiv Detail & Related papers (2020-04-17T17:00:04Z) - Fast self-testing Quantum Random Number Generator based on homodyne
detection [0.0]
Self-testing and Semi-Device Independent protocols are becoming the preferred choice for quantum technologies.
We certify 145.5MHz of quantum random bit generation rate.
arXiv Detail & Related papers (2020-04-17T15:35:33Z) - Semi-Device-Independent Random Number Generation with Flexible
Assumptions [0.0]
We propose a new framework for semi-device-independent randomness certification using a source of trusted vacuum in the form of a signal shutter.
We experimentally demonstrate our protocol with a photonic setup and generate secure random bits under three different assumptions with varying degrees of security and resulting data rates.
arXiv Detail & Related papers (2020-02-27T18:05:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.