論文の概要: A Kernel to Exploit Informative Missingness in Multivariate Time Series
from EHRs
- arxiv url: http://arxiv.org/abs/2002.12359v1
- Date: Thu, 27 Feb 2020 09:54:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 07:46:42.487763
- Title: A Kernel to Exploit Informative Missingness in Multivariate Time Series
from EHRs
- Title(参考訳): EHRからの多変量時系列におけるインフォーマティブな欠如を爆発させるカーネル
- Authors: Karl {\O}yvind Mikalsen and Cristina Soguero-Ruiz and Robert Jenssen
- Abstract要約: 電子健康記録(EHR)の大部分は、経時的に収集された臨床測定値である。
これらの臨床測定のシーケンスは、自然に時系列として表され、複数の変数と大量の欠落データによって特徴づけられる。
本稿では,観測値からの情報と,欠落したパターンに隠された情報の両方を活用可能な新しいカーネルを提案する。
- 参考スコア(独自算出の注目度): 15.582624049086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A large fraction of the electronic health records (EHRs) consists of clinical
measurements collected over time, such as lab tests and vital signs, which
provide important information about a patient's health status. These sequences
of clinical measurements are naturally represented as time series,
characterized by multiple variables and large amounts of missing data, which
complicate the analysis. In this work, we propose a novel kernel which is
capable of exploiting both the information from the observed values as well the
information hidden in the missing patterns in multivariate time series (MTS)
originating e.g. from EHRs. The kernel, called TCK$_{IM}$, is designed using an
ensemble learning strategy in which the base models are novel mixed mode
Bayesian mixture models which can effectively exploit informative missingness
without having to resort to imputation methods. Moreover, the ensemble approach
ensures robustness to hyperparameters and therefore TCK$_{IM}$ is particularly
well suited if there is a lack of labels - a known challenge in medical
applications. Experiments on three real-world clinical datasets demonstrate the
effectiveness of the proposed kernel.
- Abstract(参考訳): 電子健康記録(ehrs)の大部分は、検査やバイタルサインなどの時間とともに収集された臨床測定からなり、患者の健康状態に関する重要な情報を提供する。
これらの臨床測定のシーケンスは自然に時系列として表され、複数の変数と大量の欠落データによって特徴づけられ、解析が複雑になる。
本研究では、観測値からの情報と、EHRから派生した多変量時系列(MTS)の欠落パターンに隠された情報の両方を活用できる新しいカーネルを提案する。
TCK$_{IM}$と呼ばれるカーネルは、アンサンブル学習戦略を用いて設計されており、ベースモデルが新しい混合モードのベイズ混合モデルであり、命令法を使わずに情報不足を効果的に活用することができる。
さらに、アンサンブルアプローチはハイパーパラメータに対する堅牢性を保証するため、TCK$_{IM}$はラベルが不足している場合には特に適している。
3つの実世界の臨床データセットの実験は、提案したカーネルの有効性を示す。
関連論文リスト
- CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis [46.56667527672019]
マルチモーダルEHRデータから有意な時間的パターンを効率的に抽出するために,CTPD(Cross-Modal Temporal Pattern Discovery)フレームワークを導入する。
提案手法では,時間的セマンティックな埋め込みを生成するためにスロットアテンションを用いて改良された時間的パターン表現を提案する。
論文 参考訳(メタデータ) (2024-11-01T15:54:07Z) - EMERGE: Integrating RAG for Improved Multimodal EHR Predictive Modeling [22.94521527609479]
EMERGEは、マルチモーダルEHR予測モデリングの強化を目的とした、検索拡張生成駆動フレームワークである。
提案手法は,大規模言語モデルにより時系列データと臨床メモの両方からエンティティを抽出する。
抽出した知識は、患者の健康状態のタスク関連サマリーを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-27T10:53:15Z) - Towards Precision Healthcare: Robust Fusion of Time Series and Image Data [8.579651833717763]
本稿では,データの種類毎に2つのエンコーダを用いて,視覚情報と時間情報の両方において複雑なパターンをモデル化する手法を提案する。
また、不均衡なデータセットに対処し、不確実性損失関数を使用し、改善した結果を得る。
本手法は,臨床応用におけるマルチモーダルディープラーニングの改善に有効であることを示す。
論文 参考訳(メタデータ) (2024-05-24T11:18:13Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
マルチモーダル情報のマイニングにより患者生存を確実に予測する新しいエンドツーエンドフレームワークFOESEEを提案する。
クロスフュージョントランスフォーマーは、細胞レベル、組織レベル、腫瘍の不均一度レベルの特徴を効果的に利用し、予後を相関させる。
ハイブリットアテンションエンコーダ(HAE)は、コンテキストアテンションモジュールを用いて、コンテキスト関係の特徴を取得する。
また、モダリティ内の損失情報を再構成する非対称マスク型3重マスク型オートエンコーダを提案する。
論文 参考訳(メタデータ) (2024-05-13T12:39:08Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
本稿では,2つの1次元目標変数間で共有される信号の同定について考察する。
そこで本研究では,地中トラスラベルの存在下で使用可能な評価指標であるICMを提案する。
また、共有変数を学習するための単純かつ効果的なアプローチとして、Deep Canonical Information Decomposition (DCID)を提案する。
論文 参考訳(メタデータ) (2023-06-27T16:59:06Z) - Time-dependent Iterative Imputation for Multivariate Longitudinal
Clinical Data [0.0]
Time-Dependent Iterative Imputationは時系列データを計算するための実用的なソリューションを提供する。
500,000人以上の患者を観察するコホートに応用した場合,本手法は最先端の計算法より優れていた。
論文 参考訳(メタデータ) (2023-04-16T16:10:49Z) - Brain Image Synthesis with Unsupervised Multivariate Canonical
CSC$\ell_4$Net [122.8907826672382]
我々は,新しいCSC$ell_4$Netを用いて,イントレとイントラモーダルの両方にまたがる専用特徴を学習することを提案する。
論文 参考訳(メタデータ) (2021-03-22T05:19:40Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。