論文の概要: Theoretical Models of Learning to Learn
- arxiv url: http://arxiv.org/abs/2002.12364v1
- Date: Thu, 27 Feb 2020 13:35:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 07:46:23.068191
- Title: Theoretical Models of Learning to Learn
- Title(参考訳): 学ぶための学習の理論モデル
- Authors: Jonathan Baxter
- Abstract要約: 機械は、何らかの方法でバイアスがあるかどうかを学習できる。通常、バイアスは手によって供給される。例えば、適切な機能のセットを選択することで。
本稿では、バイアス学習の2つのモデル(あるいはそれと同等の学習)と、主な理論的結果を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Machine can only learn if it is biased in some way. Typically the bias is
supplied by hand, for example through the choice of an appropriate set of
features. However, if the learning machine is embedded within an {\em
environment} of related tasks, then it can {\em learn} its own bias by learning
sufficiently many tasks from the environment. In this paper two models of bias
learning (or equivalently, learning to learn) are introduced and the main
theoretical results presented. The first model is a PAC-type model based on
empirical process theory, while the second is a hierarchical Bayes model.
- Abstract(参考訳): 機械は何らかの方法でバイアスを受けているかしか学べない。
通常、バイアスは、例えば適切な機能のセットを選択することで手によって供給される。
しかし、学習機械が関連するタスクの「em環境」に埋め込まれている場合、環境から十分に多くのタスクを学習することで、自分自身のバイアスを学習することができる。
本稿では,バイアス学習の2つのモデル(またはそれと同値な学習)を紹介し,その主な理論結果について述べる。
第1モデルは経験的プロセス理論に基づくpac型モデルであり,第2モデルは階層ベイズモデルである。
関連論文リスト
- Toward In-Context Teaching: Adapting Examples to Students' Misconceptions [54.82965010592045]
本稿ではAdapTと呼ばれる一連のモデルと評価手法を紹介する。
AToMは、学生の過去の信念を共同で推論し、将来の信念の正しさを最適化する適応教育の新しい確率論的モデルである。
本研究は,適応型学習課題の難しさと,それを解決するための学習適応モデルの可能性を両立させるものである。
論文 参考訳(メタデータ) (2024-05-07T17:05:27Z) - On the Foundations of Shortcut Learning [20.53986437152018]
予測と可用性が形状モデルの特徴的利用とどのように相互作用するかを考察する。
線形モデルは比較的偏りがないが、ReLUやTanhの単位を持つ単一の隠蔽層を導入するとバイアスが生じる。
論文 参考訳(メタデータ) (2023-10-24T22:54:05Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - Pedagogical Rule Extraction for Learning Interpretable Models [0.0]
我々は,小データからより良いルールを学習するためのPreLIMというフレームワークを提案する。
統計モデルを使用してデータを拡張し、ルールベースのモデルを学ぶ。
実験では,最先端のPreLIM構成よりも優れたPreLIM構成を同定した。
論文 参考訳(メタデータ) (2021-12-25T20:54:53Z) - A Generative Approach for Mitigating Structural Biases in Natural
Language Inference [24.44419010439227]
本研究では、NLIタスクを生成タスクとして再構成し、モデルが入力とラベルのバイアス付きサブセットに条件付けされるようにする。
このアプローチは大量のバイアスに対して非常に堅牢であることを示す。
生成モデルは訓練が困難であり、識別ベースラインよりも一般的にはパフォーマンスが悪くなっている。
論文 参考訳(メタデータ) (2021-08-31T17:59:45Z) - Evading the Simplicity Bias: Training a Diverse Set of Models Discovers
Solutions with Superior OOD Generalization [93.8373619657239]
SGDで訓練されたニューラルネットワークは最近、線形予測的特徴に優先的に依存することが示された。
この単純さバイアスは、分布外堅牢性(OOD)の欠如を説明することができる。
単純さのバイアスを軽減し,ood一般化を改善できることを実証する。
論文 参考訳(メタデータ) (2021-05-12T12:12:24Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
大規模なオープンオンラインコース(MOOC)は、その柔軟性のおかげで、eラーニングの一般的な選択肢となっている。
多くの学習者とその多様な背景から、リアルタイムサポートの提供は課税されている。
MOOCインストラクターの大量の投稿と高い作業負荷により、インストラクターが介入を必要とするすべての学習者を識別できる可能性は低いです。
本稿では,モンテカルロドロップアウトと変分推論という2つの手法を用いて,学習者によるテキスト投稿のベイジアン深層学習を初めて検討する。
論文 参考訳(メタデータ) (2021-04-26T15:12:13Z) - Distill on the Go: Online knowledge distillation in self-supervised
learning [1.1470070927586016]
最近の研究では、より広範でより深いモデルは、小さなモデルよりも自己監督学習の恩恵を受けることが示されている。
単段階オンライン知識蒸留を用いた自己指導型学習パラダイムであるDistill-on-the-Go(DoGo)を提案する。
以上の結果から,ノイズラベルや限定ラベルの存在下でのパフォーマンス向上がみられた。
論文 参考訳(メタデータ) (2021-04-20T09:59:23Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z) - A Theory of Universal Learning [26.51949485387526]
普遍的な学習の確率は3つしかないことを示す。
任意の概念クラスの学習曲線は指数的あるいは任意に遅い速度で減衰することを示す。
論文 参考訳(メタデータ) (2020-11-09T15:10:32Z) - A Note on High-Probability versus In-Expectation Guarantees of
Generalization Bounds in Machine Learning [95.48744259567837]
統計的機械学習理論は、しばしば機械学習モデルの一般化を保証するよう試みる。
機械学習モデルのパフォーマンスに関する声明は、サンプリングプロセスを考慮する必要がある。
1つのステートメントを別のステートメントに変換する方法を示します。
論文 参考訳(メタデータ) (2020-10-06T09:41:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。