Hypergraph min-cuts from quantum entropies
- URL: http://arxiv.org/abs/2002.12397v2
- Date: Mon, 6 Sep 2021 07:45:29 GMT
- Title: Hypergraph min-cuts from quantum entropies
- Authors: Michael Walter and Freek Witteveen
- Abstract summary: We prove that the min-cut function of any weighted hypergraph can be approximated by the entropies of quantum states known as stabilizer states.
It shows that the recently defined hypergraph cones are contained in the quantum stabilizer entropy cones.
- Score: 1.6312226592634047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The min-cut function of weighted hypergraphs and the von Neumann entropy of
pure quantum states are both symmetric submodular functions. In this note, we
explain this coincidence by proving that the min-cut function of any weighted
hypergraph can be approximated (up to an overall rescaling) by the entropies of
quantum states known as stabilizer states. This implies that the min-cuts of
hypergraphs are constrained by quantum entropy inequalities, and it shows that
the recently defined hypergraph cones are contained in the quantum stabilizer
entropy cones, as has been conjectured in the recent literature.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Coherence generation with Hamiltonians [44.99833362998488]
We explore methods to generate quantum coherence through unitary evolutions.
This quantity is defined as the maximum derivative of coherence that can be achieved by a Hamiltonian.
We identify the quantum states that lead to the largest coherence derivative induced by the Hamiltonian.
arXiv Detail & Related papers (2024-02-27T15:06:40Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Integral formula for quantum relative entropy implies data processing
inequality [0.0]
We prove the monotonicity of quantum relative entropy under trace-preserving positive linear maps.
For a simple application of such monotonicities, we consider any divergence' that is non-increasing under quantum measurements.
An argument due to Hiai, Ohya, and Tsukada is used to show that the infimum of such a divergence' on pairs of quantum states with prescribed trace distance is the same as the corresponding infimum on pairs of binary classical states.
arXiv Detail & Related papers (2022-08-25T16:32:02Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - The generalized strong subadditivity of the von Neumann entropy for bosonic quantum systems [5.524804393257921]
We prove a generalization of the strong subadditivity of the von Neumann entropy for bosonic quantum Gaussian systems.
We apply our result to prove new entropic uncertainty relations with quantum memory, a generalization of the quantum Entropy Power Inequality, and the linear time scaling of the entanglement entropy produced by quadratic Hamiltonians.
arXiv Detail & Related papers (2021-05-12T12:52:40Z) - Towards a functorial description of quantum relative entropy [0.0]
Affine functor defines an affine functor in the special case where the relative entropy is finite.
A recent non-commutative disintegration theorem provides a key ingredient in this proof.
arXiv Detail & Related papers (2021-05-10T00:58:46Z) - The entropy of quantum causal networks [8.000004776730265]
We consider the quantum causal networks in the manner of entropy.
We present a revised smooth max-relative entropy of quantum combs.
At last, we consider the score to quantify the performance of an operator.
arXiv Detail & Related papers (2021-03-13T01:34:44Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - The Quantum Entropy Cone of Hypergraphs [0.20999222360659606]
We study hypergraphs and their analogously-defined entropy cones.
We find a class of quantum entropy vectors which reach beyond those of holographic states.
We show that the hypergraph framework is broadly applicable to the study of entanglement entropy.
arXiv Detail & Related papers (2020-02-13T02:45:28Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.