The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels
- URL: http://arxiv.org/abs/2410.14472v1
- Date: Fri, 18 Oct 2024 13:59:50 GMT
- Title: The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels
- Authors: Alessandro Falco, Giacomo De Palma,
- Abstract summary: Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
- Score: 53.253900735220796
- License:
- Abstract: We prove the multimode conditional quantum Entropy Power Inequality for bosonic quantum systems. This inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes among all the input states of the modes with given conditional entropies. Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime, which provides the most promising platform for quantum communication and quantum key distribution. We apply our multimode conditional quantum Entropy Power Inequality to determine new lower bounds to the squashed entanglement of a large family of bosonic quantum Gaussian states. The squashed entanglement is one of the main entanglement measures in quantum communication theory, providing the best known upper bound to the distillable key. Exploiting this result, we determine a new lower bound to the squashed entanglement of the multimode bosonic Gaussian channels that are extreme, i.e., that cannot be decomposed as a non-trivial convex combination of quantum channels. The squashed entanglement of a quantum channel provides an upper bound to its secret-key capacity, i.e., the capacity to generate a secret key shared between the sender and the receiver. Lower bounds to the squashed entanglement are notoriously hard to prove. Our results contribute to break this barrier and will stimulate further research in the field of quantum communication with bosonic quantum systems.
Related papers
- Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Entanglement Distribution and Quantum Teleportation in Higher Dimension
over the Superposition of Causal Orders of Quantum Channels [13.359442837017202]
We develop and formulate the theoretical framework for transmission of classical information through entanglement distribution of qudits over two quantum channels.
Results show that entanglement distribution of a qudit provides a considerable gain in fidelity even with increase in noise.
arXiv Detail & Related papers (2023-03-19T15:06:24Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Perturbative quantum simulation [2.309018557701645]
We introduce perturbative quantum simulation, which combines the complementary strengths of the two approaches.
The use of a quantum processor eliminates the need to identify a solvable unperturbed Hamiltonian.
We numerically benchmark the method for interacting bosons, fermions, and quantum spins in different topologies.
arXiv Detail & Related papers (2021-06-10T17:38:25Z) - Numerical hardware-efficient variational quantum simulation of a soliton
solution [0.0]
We discuss the capabilities of quantum algorithms with special attention paid to a hardware-efficient variational eigensolver.
A delicate interplay between magnetic interactions allows one to stabilize a chiral state that destroys the homogeneity of magnetic ordering.
We argue that, while being capable of correctly reproducing a uniform magnetic configuration, the hardware-efficient ansatz meets difficulties in providing a detailed description to a noncollinear magnetic structure.
arXiv Detail & Related papers (2021-05-13T11:58:18Z) - Demonstration of quantum advantage by a joint detection receiver for
optical communications using quantum belief propagation on a trapped-ion
device [0.7758302353877525]
We present an experimental realization of a quantum joint detection receiver for binary phase shift keying codewords of a 3-bit linear tree code.
The receiver, translated to a quantum circuit, was experimentally implemented on a trapped-ion device.
We provide an experimental framework that surpasses the quantum limit on the minimum average decoding error probability.
arXiv Detail & Related papers (2021-02-25T18:05:31Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Demonstration of quantum brachistochrones between distant states of an
atom [0.0]
We show fast coherent transport of an atomic wave packet over a distance of 15 times its size.
Results shed light upon a fundamental limit of quantum state dynamics and are expected to find relevant applications in quantum sensing and quantum computing.
arXiv Detail & Related papers (2020-09-04T15:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.