Improving Learning Effectiveness For Object Detection and Classification
in Cluttered Backgrounds
- URL: http://arxiv.org/abs/2002.12467v1
- Date: Thu, 27 Feb 2020 22:28:48 GMT
- Title: Improving Learning Effectiveness For Object Detection and Classification
in Cluttered Backgrounds
- Authors: Vinorth Varatharasan, Hyo-Sang Shin, Antonios Tsourdos, Nick Colosimo
- Abstract summary: This paper develops a framework that permits to autonomously generate a training dataset in heterogeneous cluttered backgrounds.
It is clear that the learning effectiveness of the proposed framework should be improved in complex and heterogeneous environments.
The performance of the proposed framework is investigated through empirical tests and compared with that of the model trained with the COCO dataset.
- Score: 6.729108277517129
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Usually, Neural Networks models are trained with a large dataset of images in
homogeneous backgrounds. The issue is that the performance of the network
models trained could be significantly degraded in a complex and heterogeneous
environment. To mitigate the issue, this paper develops a framework that
permits to autonomously generate a training dataset in heterogeneous cluttered
backgrounds. It is clear that the learning effectiveness of the proposed
framework should be improved in complex and heterogeneous environments,
compared with the ones with the typical dataset. In our framework, a
state-of-the-art image segmentation technique called DeepLab is used to extract
objects of interest from a picture and Chroma-key technique is then used to
merge the extracted objects of interest into specific heterogeneous
backgrounds. The performance of the proposed framework is investigated through
empirical tests and compared with that of the model trained with the COCO
dataset. The results show that the proposed framework outperforms the model
compared. This implies that the learning effectiveness of the framework
developed is superior to the models with the typical dataset.
Related papers
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient [52.2669490431145]
PropEn is inspired by'matching', which enables implicit guidance without training a discriminator.
We show that training with a matched dataset approximates the gradient of the property of interest while remaining within the data distribution.
arXiv Detail & Related papers (2024-05-28T11:30:19Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Diffusion Models Beat GANs on Image Classification [37.70821298392606]
Diffusion models have risen to prominence as a state-of-the-art method for image generation, denoising, inpainting, super-resolution, manipulation, etc.
We present our findings that these embeddings are useful beyond the noise prediction task, as they contain discriminative information and can also be leveraged for classification.
We find that with careful feature selection and pooling, diffusion models outperform comparable generative-discriminative methods for classification tasks.
arXiv Detail & Related papers (2023-07-17T17:59:40Z) - Towards Robust Dataset Learning [90.2590325441068]
We propose a principled, tri-level optimization to formulate the robust dataset learning problem.
Under an abstraction model that characterizes robust vs. non-robust features, the proposed method provably learns a robust dataset.
arXiv Detail & Related papers (2022-11-19T17:06:10Z) - DcnnGrasp: Towards Accurate Grasp Pattern Recognition with Adaptive
Regularizer Learning [13.08779945306727]
Current state-of-the-art methods ignore category information of objects which is crucial for grasp pattern recognition.
This paper presents a novel dual-branch convolutional neural network (DcnnGrasp) to achieve joint learning of object category classification and grasp pattern recognition.
arXiv Detail & Related papers (2022-05-11T00:34:27Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - MOGAN: Morphologic-structure-aware Generative Learning from a Single
Image [59.59698650663925]
Recently proposed generative models complete training based on only one image.
We introduce a MOrphologic-structure-aware Generative Adversarial Network named MOGAN that produces random samples with diverse appearances.
Our approach focuses on internal features including the maintenance of rational structures and variation on appearance.
arXiv Detail & Related papers (2021-03-04T12:45:23Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
In this work, a general architecture is first formulated probabilistically to extract domain invariant feature through multi-domain image translation.
And then a novel gradient-weighted similarity activation mapping loss (Grad-SAM) is incorporated for finer localization with high accuracy.
Extensive experiments have been conducted to validate the effectiveness of the proposed approach on the CMUSeasons dataset.
Our performance is on par with or even outperforms the state-of-the-art image-based localization baselines in medium or high precision.
arXiv Detail & Related papers (2020-09-16T14:43:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.