Inverse Graphics GAN: Learning to Generate 3D Shapes from Unstructured
2D Data
- URL: http://arxiv.org/abs/2002.12674v1
- Date: Fri, 28 Feb 2020 12:28:12 GMT
- Title: Inverse Graphics GAN: Learning to Generate 3D Shapes from Unstructured
2D Data
- Authors: Sebastian Lunz, Yingzhen Li, Andrew Fitzgibbon, Nate Kushman
- Abstract summary: We introduce the first scalable training technique for 3D generative models from 2D data.
We show that our model can consistently learn to generate better shapes than existing models when trained with exclusively unstructured 2D images.
- Score: 19.807173910379966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work has shown the ability to learn generative models for 3D shapes
from only unstructured 2D images. However, training such models requires
differentiating through the rasterization step of the rendering process,
therefore past work has focused on developing bespoke rendering models which
smooth over this non-differentiable process in various ways. Such models are
thus unable to take advantage of the photo-realistic, fully featured,
industrial renderers built by the gaming and graphics industry. In this paper
we introduce the first scalable training technique for 3D generative models
from 2D data which utilizes an off-the-shelf non-differentiable renderer. To
account for the non-differentiability, we introduce a proxy neural renderer to
match the output of the non-differentiable renderer. We further propose
discriminator output matching to ensure that the neural renderer learns to
smooth over the rasterization appropriately. We evaluate our model on images
rendered from our generated 3D shapes, and show that our model can consistently
learn to generate better shapes than existing models when trained with
exclusively unstructured 2D images.
Related papers
- PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - HoloDiffusion: Training a 3D Diffusion Model using 2D Images [71.1144397510333]
We introduce a new diffusion setup that can be trained, end-to-end, with only posed 2D images for supervision.
We show that our diffusion models are scalable, train robustly, and are competitive in terms of sample quality and fidelity to existing approaches for 3D generative modeling.
arXiv Detail & Related papers (2023-03-29T07:35:56Z) - 3D Neural Field Generation using Triplane Diffusion [37.46688195622667]
We present an efficient diffusion-based model for 3D-aware generation of neural fields.
Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields.
We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
arXiv Detail & Related papers (2022-11-30T01:55:52Z) - DreamFusion: Text-to-3D using 2D Diffusion [52.52529213936283]
Recent breakthroughs in text-to-image synthesis have been driven by diffusion models trained on billions of image-text pairs.
In this work, we circumvent these limitations by using a pretrained 2D text-to-image diffusion model to perform text-to-3D synthesis.
Our approach requires no 3D training data and no modifications to the image diffusion model, demonstrating the effectiveness of pretrained image diffusion models as priors.
arXiv Detail & Related papers (2022-09-29T17:50:40Z) - A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware
Image Synthesis [163.96778522283967]
We propose a shading-guided generative implicit model that is able to learn a starkly improved shape representation.
An accurate 3D shape should also yield a realistic rendering under different lighting conditions.
Our experiments on multiple datasets show that the proposed approach achieves photorealistic 3D-aware image synthesis.
arXiv Detail & Related papers (2021-10-29T10:53:12Z) - Using Adaptive Gradient for Texture Learning in Single-View 3D
Reconstruction [0.0]
Learning-based approaches for 3D model reconstruction have attracted attention owing to its modern applications.
We present a novel sampling algorithm by optimizing the gradient of predicted coordinates based on the variance on the sampling image.
We also adopt Frechet Inception Distance (FID) to form a loss function in learning, which helps bridging the gap between rendered images and input images.
arXiv Detail & Related papers (2021-04-29T07:52:54Z) - SMPLpix: Neural Avatars from 3D Human Models [56.85115800735619]
We bridge the gap between classic rendering and the latest generative networks operating in pixel space.
We train a network that directly converts a sparse set of 3D mesh vertices into photorealistic images.
We show the advantage over conventional differentiables both in terms of the level of photorealism and rendering efficiency.
arXiv Detail & Related papers (2020-08-16T10:22:00Z) - Convolutional Generation of Textured 3D Meshes [34.20939983046376]
We propose a framework that can generate triangle meshes and associated high-resolution texture maps, using only 2D supervision from single-view natural images.
A key contribution of our work is the encoding of the mesh and texture as 2D representations, which are semantically aligned and can be easily modeled by a 2D convolutional GAN.
We demonstrate the efficacy of our method on Pascal3D+ Cars and CUB, both in an unconditional setting and in settings where the model is conditioned on class labels, attributes, and text.
arXiv Detail & Related papers (2020-06-13T15:23:29Z) - Leveraging 2D Data to Learn Textured 3D Mesh Generation [33.32377849866736]
We present the first generative model of textured 3D meshes.
We train our model to explain a distribution of images by modelling each image as a 3D foreground object.
It learns to generate meshes that when rendered, produce images similar to those in its training set.
arXiv Detail & Related papers (2020-04-08T18:00:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.