3D Neural Field Generation using Triplane Diffusion
- URL: http://arxiv.org/abs/2211.16677v1
- Date: Wed, 30 Nov 2022 01:55:52 GMT
- Title: 3D Neural Field Generation using Triplane Diffusion
- Authors: J. Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu and
Gordon Wetzstein
- Abstract summary: We present an efficient diffusion-based model for 3D-aware generation of neural fields.
Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields.
We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
- Score: 37.46688195622667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have emerged as the state-of-the-art for image generation,
among other tasks. Here, we present an efficient diffusion-based model for
3D-aware generation of neural fields. Our approach pre-processes training data,
such as ShapeNet meshes, by converting them to continuous occupancy fields and
factoring them into a set of axis-aligned triplane feature representations.
Thus, our 3D training scenes are all represented by 2D feature planes, and we
can directly train existing 2D diffusion models on these representations to
generate 3D neural fields with high quality and diversity, outperforming
alternative approaches to 3D-aware generation. Our approach requires essential
modifications to existing triplane factorization pipelines to make the
resulting features easy to learn for the diffusion model. We demonstrate
state-of-the-art results on 3D generation on several object classes from
ShapeNet.
Related papers
- DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
This paper introduces a novel framework called LN3Diff to address a unified 3D diffusion pipeline.
Our approach harnesses a 3D-aware architecture and variational autoencoder to encode the input image into a structured, compact, and 3D latent space.
It achieves state-of-the-art performance on ShapeNet for 3D generation and demonstrates superior performance in monocular 3D reconstruction and conditional 3D generation.
arXiv Detail & Related papers (2024-03-18T17:54:34Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
We present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model.
Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach.
These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model.
arXiv Detail & Related papers (2024-03-14T07:39:59Z) - CAD: Photorealistic 3D Generation via Adversarial Distillation [28.07049413820128]
We propose a novel learning paradigm for 3D synthesis that utilizes pre-trained diffusion models.
Our method unlocks the generation of high-fidelity and photorealistic 3D content conditioned on a single image and prompt.
arXiv Detail & Related papers (2023-12-11T18:59:58Z) - Breathing New Life into 3D Assets with Generative Repainting [74.80184575267106]
Diffusion-based text-to-image models ignited immense attention from the vision community, artists, and content creators.
Recent works have proposed various pipelines powered by the entanglement of diffusion models and neural fields.
We explore the power of pretrained 2D diffusion models and standard 3D neural radiance fields as independent, standalone tools.
Our pipeline accepts any legacy renderable geometry, such as textured or untextured meshes, and orchestrates the interaction between 2D generative refinement and 3D consistency enforcement tools.
arXiv Detail & Related papers (2023-09-15T16:34:51Z) - Pushing the Limits of 3D Shape Generation at Scale [65.24420181727615]
We present a significant breakthrough in 3D shape generation by scaling it to unprecedented dimensions.
We have developed a model with an astounding 3.6 billion trainable parameters, establishing it as the largest 3D shape generation model to date, named Argus-3D.
arXiv Detail & Related papers (2023-06-20T13:01:19Z) - Sin3DM: Learning a Diffusion Model from a Single 3D Textured Shape [46.31314488932164]
We present Sin3DM, a diffusion model that learns the internal patch distribution from a single 3D textured shape.
We show that our method outperforms prior methods in generation quality of 3D shapes.
arXiv Detail & Related papers (2023-05-24T17:57:15Z) - Locally Attentional SDF Diffusion for Controllable 3D Shape Generation [24.83724829092307]
We propose a diffusion-based 3D generation framework, to model plausible 3D shapes, via 2D sketch image input.
Our method is built on a two-stage diffusion model. The first stage, named occupancy-diffusion, aims to generate a low-resolution occupancy field to approximate the shape shell.
The second stage, named SDF-diffusion, synthesizes a high-resolution signed distance field within the occupied voxels determined by the first stage to extract fine geometry.
arXiv Detail & Related papers (2023-05-08T05:07:23Z) - 3D-LDM: Neural Implicit 3D Shape Generation with Latent Diffusion Models [8.583859530633417]
We propose a diffusion model for neural implicit representations of 3D shapes that operates in the latent space of an auto-decoder.
This allows us to generate diverse and high quality 3D surfaces.
arXiv Detail & Related papers (2022-12-01T20:00:00Z) - Deep Generative Models on 3D Representations: A Survey [81.73385191402419]
Generative models aim to learn the distribution of observed data by generating new instances.
Recently, researchers started to shift focus from 2D to 3D space.
representing 3D data poses significantly greater challenges.
arXiv Detail & Related papers (2022-10-27T17:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.