論文の概要: Applying Tensor Decomposition to image for Robustness against
Adversarial Attack
- arxiv url: http://arxiv.org/abs/2002.12913v2
- Date: Thu, 5 Mar 2020 14:28:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 01:47:30.670867
- Title: Applying Tensor Decomposition to image for Robustness against
Adversarial Attack
- Title(参考訳): 逆行性攻撃に対するロバスト性画像へのテンソル分解の適用
- Authors: Seungju Cho, Tae Joon Jun, Mingu Kang, Daeyoung Kim
- Abstract要約: 小さな摂動を加えることで、ディープラーニングモデルを簡単に騙すことができる。
本稿では,逆例に対してモデルを守るためにテンソル分解を組み合わせることを提案する。
- 参考スコア(独自算出の注目度): 3.347059384111439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays the deep learning technology is growing faster and shows dramatic
performance in computer vision areas. However, it turns out a deep learning
based model is highly vulnerable to some small perturbation called an
adversarial attack. It can easily fool the deep learning model by adding small
perturbations. On the other hand, tensor decomposition method widely uses for
compressing the tensor data, including data matrix, image, etc. In this paper,
we suggest combining tensor decomposition for defending the model against
adversarial example. We verify this idea is simple and effective to resist
adversarial attack. In addition, this method rarely degrades the original
performance of clean data. We experiment on MNIST, CIFAR10 and ImageNet data
and show our method robust on state-of-the-art attack methods.
- Abstract(参考訳): 現在、ディープラーニング技術は急速に成長し、コンピュータビジョンの分野で劇的なパフォーマンスを示している。
しかし、ディープラーニングベースのモデルは、敵攻撃と呼ばれる小さな摂動に対して非常に脆弱であることが判明した。
小さな摂動を加えることで、ディープラーニングモデルを簡単に騙すことができる。
一方、テンソル分解法は、データ行列や画像などを含むテンソルデータを圧縮するために広く用いられている。
本稿では,逆例に対してモデルを守るためにテンソル分解を組み合わせることを提案する。
我々は、このアイデアが敵攻撃に抵抗するためにシンプルで効果的であることを検証する。
さらに、この手法はクリーンデータの本来の性能を低下させることは滅多にない。
我々は、MNIST、CIFAR10、ImageNetデータについて実験を行い、最先端の攻撃手法でロバストな手法を示す。
関連論文リスト
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Towards Robust Neural Image Compression: Adversarial Attack and Model
Finetuning [30.36695754075178]
ディープニューラルネットワークに基づく画像圧縮は広く研究されている。
そこで,本研究では,未知の逆方向の摂動を原画像に注入することにより,一般的な画像圧縮モデルの堅牢性を検討する。
幾何的自己アンサンブルに基づく事前処理や敵の訓練を含む様々な防衛戦略を、敵の攻撃に対して検討し、モデルの堅牢性を改善する。
論文 参考訳(メタデータ) (2021-12-16T08:28:26Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - Meta Adversarial Perturbations [66.43754467275967]
メタ逆境摂動(MAP)の存在を示す。
MAPは1段階の上昇勾配更新によって更新された後、自然画像を高い確率で誤分類する。
これらの摂動は画像に依存しないだけでなく、モデルに依存しないものであり、単一の摂動は見えないデータポイントと異なるニューラルネットワークアーキテクチャにまたがってうまく一般化される。
論文 参考訳(メタデータ) (2021-11-19T16:01:45Z) - AdvHaze: Adversarial Haze Attack [19.744435173861785]
現実世界の風景に共通する現象であるヘイズに基づく新たな敵対攻撃法を紹介します。
本手法は, 大気散乱モデルに基づく画像に, 高い現実性で, 潜在的に逆転するハゼを合成することができる。
提案手法は,高い成功率を達成し,ベースラインと異なる分類モデル間での転送性が向上することを示す。
論文 参考訳(メタデータ) (2021-04-28T09:52:25Z) - Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp
Adversarial Attacks [154.31827097264264]
敵の訓練は、境界Lpノルムを持つ攻撃脅威モデルに対する一般的な防衛戦略である。
本稿では,2次元マニフォールド逆行訓練(DMAT)を提案する。
我々のDMATは、通常の画像の性能を改善し、Lp攻撃に対する標準的な敵の訓練と同等の堅牢性を達成する。
論文 参考訳(メタデータ) (2020-09-05T06:00:28Z) - Stylized Adversarial Defense [105.88250594033053]
逆行訓練は摂動パターンを生成し、モデルを堅牢化するためのトレーニングセットにそれらを含む。
我々は、より強力な敵を作るために、機能空間から追加情報を活用することを提案する。
我々の対人訓練アプローチは、最先端の防御と比べて強い堅牢性を示している。
論文 参考訳(メタデータ) (2020-07-29T08:38:10Z) - Towards Achieving Adversarial Robustness by Enforcing Feature
Consistency Across Bit Planes [51.31334977346847]
我々は、高ビット平面の情報に基づいて粗い印象を形成するためにネットワークを訓練し、低ビット平面を用いて予測を洗練させる。
異なる量子化画像間で学習した表現に一貫性を付与することにより、ネットワークの対角的ロバスト性が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-04-01T09:31:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。