論文の概要: Joint Face Completion and Super-resolution using Multi-scale Feature
Relation Learning
- arxiv url: http://arxiv.org/abs/2003.00255v2
- Date: Tue, 25 Aug 2020 14:35:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 20:53:09.399687
- Title: Joint Face Completion and Super-resolution using Multi-scale Feature
Relation Learning
- Title(参考訳): マルチスケール特徴関係学習による顔の完成と超解像
- Authors: Zhilei Liu, Yunpeng Wu, Le Li, Cuicui Zhang, Baoyuan Wu
- Abstract要約: 本稿では,MFG-GAN(MFG-GAN)を用いたマルチスケール機能グラフ生成手法を提案する。
GANに基づいて、MFG-GANはグラフ畳み込みとピラミッドネットワークを統合し、隠蔽された低解像度の顔画像を非隠蔽の高解像度の顔画像に復元する。
パブリックドメインCelebAとHelenデータベースの実験結果から,提案手法は顔超解像(最大4倍または8倍)と顔補完を同時に行う上で,最先端の手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 26.682678558621625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous research on face restoration often focused on repairing a specific
type of low-quality facial images such as low-resolution (LR) or occluded
facial images. However, in the real world, both the above-mentioned forms of
image degradation often coexist. Therefore, it is important to design a model
that can repair LR occluded images simultaneously. This paper proposes a
multi-scale feature graph generative adversarial network (MFG-GAN) to implement
the face restoration of images in which both degradation modes coexist, and
also to repair images with a single type of degradation. Based on the GAN, the
MFG-GAN integrates the graph convolution and feature pyramid network to restore
occluded low-resolution face images to non-occluded high-resolution face
images. The MFG-GAN uses a set of customized losses to ensure that high-quality
images are generated. In addition, we designed the network in an end-to-end
format. Experimental results on the public-domain CelebA and Helen databases
show that the proposed approach outperforms state-of-the-art methods in
performing face super-resolution (up to 4x or 8x) and face completion
simultaneously. Cross-database testing also revealed that the proposed approach
has good generalizability.
- Abstract(参考訳): 以前の顔修復の研究は、低解像度(LR)や隠蔽された顔画像のような、特定の品質の低い顔画像の修復に重点を置いていた。
しかし、実世界では、上記の2種類の画像劣化はしばしば共存する。
したがって、lr画像を同時に修復できるモデルを設計することが重要である。
本稿では,2つの劣化モードが共存する画像の顔復元を実現するとともに,1つのタイプの劣化で画像の修復を行うマルチスケール特徴グラフ生成敵ネットワーク(mfg-gan)を提案する。
GANに基づいて、MFG-GANはグラフ畳み込みとピラミッドネットワークを統合し、隠蔽された低解像度の顔画像を非隠蔽の高解像度の顔画像に復元する。
mfg-ganは、高品質な画像が生成されるようにカスタマイズされた損失を使用する。
さらに,エンド・ツー・エンド・フォーマットでネットワークを設計した。
公開ドメインのcelebaとhelenデータベースを用いた実験の結果,提案手法は,顔の超解像(最大4倍,8倍)と顔の完成を同時に行う場合,最先端の手法よりも優れていることがわかった。
データベース間のテストにより、提案手法の一般化性も向上した。
関連論文リスト
- W-Net: A Facial Feature-Guided Face Super-Resolution Network [8.037821981254389]
Face Super-Resolutionは、高解像度 (HR) の顔画像を低解像度 (LR) の顔画像から復元することを目的としている。
既存手法は, 再建効率が低く, 事前情報の利用が不十分であるため, 理想的ではない。
本稿では,この課題に対処するため,W-Netと呼ばれる新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-06-02T09:05:40Z) - Parameter Efficient Adaptation for Image Restoration with Heterogeneous Mixture-of-Experts [52.39959535724677]
画像復元モデルの一般化を改善するための代替手法を提案する。
ローカル,グローバル,チャネル表現ベースをキャプチャするマルチブランチ設計のMixture-of-Experts (MoE) であるAdaptIRを提案する。
我々のAdaptIRは、単一劣化タスクにおける安定した性能を実現し、8時間間、微調整はわずか0.6%のパラメータしか持たず、ハイブリッド劣化タスクにおいて優れる。
論文 参考訳(メタデータ) (2023-12-12T14:27:59Z) - SelFSR: Self-Conditioned Face Super-Resolution in the Wild via Flow
Field Degradation Network [12.976199676093442]
野生における顔超解像のための新しいドメイン適応分解ネットワークを提案する。
我々のモデルは,CelebAと実世界の顔データセットの両方で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-12-20T17:04:00Z) - Hierarchical Conditional Flow: A Unified Framework for Image
Super-Resolution and Image Rescaling [139.25215100378284]
画像SRと画像再スケーリングのための統合フレームワークとして階層的条件フロー(HCFlow)を提案する。
HCFlowは、LR画像と残りの高周波成分の分布を同時にモデル化することにより、HRとLR画像ペア間のマッピングを学習する。
さらに性能を高めるために、知覚的損失やGAN損失などの他の損失と、トレーニングで一般的に使用される負の対数類似損失とを組み合わせる。
論文 参考訳(メタデータ) (2021-08-11T16:11:01Z) - Joint Face Image Restoration and Frontalization for Recognition [79.78729632975744]
現実世界のシナリオでは、大きなポーズ、悪い照明、低解像度、ぼやけ、ノイズなど、多くの要因が顔認識性能を損なう可能性がある。
それまでの努力は通常、まず品質の低い顔から高品質な顔に復元し、次に顔認識を行う。
与えられた低品質の顔からフロンダル化された高品質の顔を復元する多段階顔復元モデルを提案する。
論文 参考訳(メタデータ) (2021-05-12T03:52:41Z) - Perceptual Image Restoration with High-Quality Priori and Degradation
Learning [28.93489249639681]
本モデルは,復元画像と劣化画像の類似度を測定するのに有効であることを示す。
同時修復・拡張フレームワークは,実世界の複雑な分解型によく一般化する。
論文 参考訳(メタデータ) (2021-03-04T13:19:50Z) - Implicit Subspace Prior Learning for Dual-Blind Face Restoration [66.67059961379923]
新しい暗黙的サブスペース事前学習(ISPL)フレームワークが、二重盲顔復元の一般的な解決策として提案されている。
実験の結果,既存の最先端手法に対するISPLの認識歪改善が顕著であった。
論文 参考訳(メタデータ) (2020-10-12T08:04:24Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
本稿では,一対の相補的な旅先を含むLRD画像モデルを提案する。
次に、画像CSのためのRDモデルに基づく新しいハイブリッド・プラグイン・アンド・プレイ・フレームワークを提案する。
そこで,提案したH-based image CS問題の解法として,単純で効果的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-16T08:17:44Z) - HiFaceGAN: Face Renovation via Collaborative Suppression and
Replenishment [63.333407973913374]
フェース・リノベーション(FR)は意味誘導型生成問題である。
HiFaceGANは、複数のネストされたCSRユニットを含む多段階フレームワークである。
合成画像と実顔画像の両方の実験により,HiFaceGANの優れた性能が確認された。
論文 参考訳(メタデータ) (2020-05-11T11:33:17Z) - Feature Super-Resolution Based Facial Expression Recognition for
Multi-scale Low-Resolution Faces [7.634398926381845]
超解像法はしばしば低分解能画像の高精細化に使用されるが、FERタスクの性能は極低分解能画像では制限される。
本研究では,物体検出のための特徴的超解像法に触発されて,頑健な表情認識のための新たな生成逆ネットワークに基づく超解像法を提案する。
論文 参考訳(メタデータ) (2020-04-05T15:38:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。