論文の概要: Gimme That Model!: A Trusted ML Model Trading Protocol
- arxiv url: http://arxiv.org/abs/2003.00610v2
- Date: Tue, 3 Mar 2020 09:36:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 13:20:40.668813
- Title: Gimme That Model!: A Trusted ML Model Trading Protocol
- Title(参考訳): そのモデルだ!
信頼されたMLモデル取引プロトコル
- Authors: Laia Amor\'os, Syed Mahbub Hafiz, Keewoo Lee, and M. Caner Tol
- Abstract要約: 本稿では,MLモデルを取引するためのHEベースのプロトコルを提案する。
全体的なトランザクションをより効率的かつセキュアにするためのプロトコルの改善の可能性について説明する。
- 参考スコア(独自算出の注目度): 1.749935196721634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a HE-based protocol for trading ML models and describe possible
improvements to the protocol to make the overall transaction more efficient and
secure.
- Abstract(参考訳): mlモデルを取引するためのheベースのプロトコルを提案し、全体的なトランザクションをより効率的かつ安全にするためのプロトコルの改善について説明する。
関連論文リスト
- Games for AI Control: Models of Safety Evaluations of AI Deployment Protocols [52.40622903199512]
本稿では,多目的かつ部分的に観察可能なゲームとして,AI-Control Gamesを紹介した。
我々は、信頼できない言語モデルをプログラミングアシスタントとしてデプロイするためのプロトコルをモデル化、評価、合成するために、フォーマリズムを適用した。
論文 参考訳(メタデータ) (2024-09-12T12:30:07Z) - Utilizing Large Language Models to Translate RFC Protocol Specifications
to CPSA Definitions [2.038893829552158]
本稿では,Large Language Models (LLM) を用いて RFC (Request for Comments) プロトコル仕様を,CPSA (Cryptographic Protocol Shapes Analyzer) と互換性のあるフォーマットに変換することを提案する。
本手法は,プロトコル仕様をCPSAに適した構造化モデルに自動変換する手法を提供することにより,プロトコル解析に関わる複雑さと労力を削減することを目的としている。
論文 参考訳(メタデータ) (2024-01-30T16:50:14Z) - Towards Auto-Modeling of Formal Verification for NextG Protocols: A
Multimodal cross- and self-attention Large Language Model Approach [3.9155346446573502]
本稿では,5GおよびNextGプロトコル(AVRE)のための実世界プロンプトを用いた形式検証の自動モデリングを提案する。
AVREは次世代通信プロトコル(NextG)の正式な検証のために設計された新しいシステムである。
論文 参考訳(メタデータ) (2023-12-28T20:41:24Z) - Predictable MDP Abstraction for Unsupervised Model-Based RL [93.91375268580806]
予測可能なMDP抽象化(PMA)を提案する。
元のMDPで予測モデルを訓練する代わりに、学習されたアクション空間を持つ変換MDPでモデルを訓練する。
我々はPMAを理論的に解析し、PMAが以前の教師なしモデルベースRLアプローチよりも大幅に改善することを示す。
論文 参考訳(メタデータ) (2023-02-08T07:37:51Z) - QLAMMP: A Q-Learning Agent for Optimizing Fees on Automated Market
Making Protocols [5.672898304129217]
本稿では,所定のAMMプロトコルの最適料金率を学習し,係数を活用するQ-Learning Agent for Market Making Protocols (QLAMMP) を開発する。
QLAMMPは、すべてのシミュレートされたテスト条件下で、その静的な性能を一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2022-11-28T00:30:45Z) - Scaling up Trustless DNN Inference with Zero-Knowledge Proofs [47.42532753464726]
本稿では,MLモデル推論を非インタラクティブに検証する,最初の実用的なImageNet-scale法を提案する。
フル解像度のImageNetモデルに対する有効な推論のZKSNARK証明を初めて提供し、79%のトップ5精度を実現した。
論文 参考訳(メタデータ) (2022-10-17T00:35:38Z) - Byzantine-Robust Federated Learning with Optimal Statistical Rates and
Privacy Guarantees [123.0401978870009]
ほぼ最適な統計率を持つビザンチン・ロバスト・フェデレーション学習プロトコルを提案する。
競合プロトコルに対してベンチマークを行い、提案プロトコルの実証的な優位性を示す。
我々のバケットプロトコルは、プライバシー保証手順と自然に組み合わせて、半正直なサーバに対するセキュリティを導入することができる。
論文 参考訳(メタデータ) (2022-05-24T04:03:07Z) - Model-Augmented Q-learning [112.86795579978802]
モデルベースRLの構成要素を付加したMFRLフレームワークを提案する。
具体的には、$Q$-valuesだけでなく、共有ネットワークにおける遷移と報酬の両方を見積もる。
提案手法は,MQL (Model-augmented $Q$-learning) とよばれる提案手法により,真に報いられた学習によって得られる解と同一のポリシ不変解が得られることを示す。
論文 参考訳(メタデータ) (2021-02-07T17:56:50Z) - Encoder-Decoder Models Can Benefit from Pre-trained Masked Language
Models in Grammatical Error Correction [54.569707226277735]
従来の方法はEncDecモデルに適用した場合に潜在的な欠点がある。
提案手法では, コーパスを微調整し, GECモデルに付加的な特徴として出力を微調整する。
BEA 2019とCoNLL-2014ベンチマークにおける最高のパフォーマンスモデルのパフォーマンス。
論文 参考訳(メタデータ) (2020-05-03T04:49:31Z) - PEL-BERT: A Joint Model for Protocol Entity Linking [6.5191667029024805]
本稿では,細調整言語モデルとRFCドメインモデルとを結合するモデルを提案する。
第1に,プロトコル EL のガイドラインとしてプロトコル知識ベースを設計する。第2に,プロトコル内の名前付きエンティティをプロトコル知識ベース内のカテゴリにリンクする新しいモデル PEL-BERT を提案する。
実験結果から,アノテートされたデータセット上でのELの最先端性能が得られた。
論文 参考訳(メタデータ) (2020-01-28T16:42:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。