論文の概要: Global Context-Aware Progressive Aggregation Network for Salient Object
Detection
- arxiv url: http://arxiv.org/abs/2003.00651v1
- Date: Mon, 2 Mar 2020 04:26:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 05:14:33.313534
- Title: Global Context-Aware Progressive Aggregation Network for Salient Object
Detection
- Title(参考訳): 高度物体検出のためのグローバルコンテキストアウェアプログレッシブアグリゲーションネットワーク
- Authors: Zuyao Chen, Qianqian Xu, Runmin Cong, Qingming Huang
- Abstract要約: 我々は,低レベルな外観特徴,高レベルな意味特徴,グローバルな文脈特徴を統合化するための新しいネットワークGCPANetを提案する。
提案手法は, 定量的かつ定性的に, 最先端の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 117.943116761278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep convolutional neural networks have achieved competitive performance in
salient object detection, in which how to learn effective and comprehensive
features plays a critical role. Most of the previous works mainly adopted
multiple level feature integration yet ignored the gap between different
features. Besides, there also exists a dilution process of high-level features
as they passed on the top-down pathway. To remedy these issues, we propose a
novel network named GCPANet to effectively integrate low-level appearance
features, high-level semantic features, and global context features through
some progressive context-aware Feature Interweaved Aggregation (FIA) modules
and generate the saliency map in a supervised way. Moreover, a Head Attention
(HA) module is used to reduce information redundancy and enhance the top layers
features by leveraging the spatial and channel-wise attention, and the Self
Refinement (SR) module is utilized to further refine and heighten the input
features. Furthermore, we design the Global Context Flow (GCF) module to
generate the global context information at different stages, which aims to
learn the relationship among different salient regions and alleviate the
dilution effect of high-level features. Experimental results on six benchmark
datasets demonstrate that the proposed approach outperforms the
state-of-the-art methods both quantitatively and qualitatively.
- Abstract(参考訳): ディープ畳み込みニューラルネットワークは、健全なオブジェクト検出において、効果的で包括的な機能を学ぶ方法が重要な役割を果たす、競争的なパフォーマンスを実現している。
以前の作業の多くは、主にマルチレベル機能統合を採用していたが、異なる機能間のギャップは無視していた。
さらに、トップダウン経路を通過する際に高レベルの特徴を希釈するプロセスも存在する。
これらの問題を解決するため、我々はGCPANetという新しいネットワークを提案し、プログレッシブ・コンテクスト・アグリゲーション(FIA)モジュールを通じて低レベルな外観特徴、高レベルなセマンティック特徴、グローバルなコンテキスト特徴を効果的に統合し、教師付き方法でサリエンシ・マップを生成する。
さらに、ヘッドアテンション(HA)モジュールは、空間的及びチャネル的注意を生かして情報冗長性を低減し、トップレイヤの特徴を高めるために使用され、セルフリファインメント(SR)モジュールは入力特徴をさらに洗練・高めるために使用される。
さらに,グローバル・コンテキスト・フロー(gcf)モジュールの設計を行い,異なる段階のグローバル・コンテキスト情報を生成する。
6つのベンチマークデータセットにおける実験結果は、提案手法が定量的および定性的に最先端手法よりも優れていることを示している。
関連論文リスト
- Point Cloud Understanding via Attention-Driven Contrastive Learning [64.65145700121442]
トランスフォーマーベースのモデルは、自己認識機構を活用することにより、先進的なポイントクラウド理解を持つ。
PointACLは、これらの制限に対処するために設計された、注意駆動のコントラスト学習フレームワークである。
本手法では, 注意駆動型動的マスキング手法を用いて, モデルが非集中領域に集中するように誘導する。
論文 参考訳(メタデータ) (2024-11-22T05:41:00Z) - FANet: Feature Amplification Network for Semantic Segmentation in Cluttered Background [9.970265640589966]
既存のディープラーニングアプローチでは、複雑なシナリオに存在するセマンティックセグメンテーションにおいて重要なセマンティックな方法が残されている。
マルチステージ機能拡張モジュールを用いて意味情報を組み込んだバックボーンネットワークとして機能増幅ネットワーク(FANet)を提案する。
実験の結果,既存の手法と比較して最先端の性能が示された。
論文 参考訳(メタデータ) (2024-07-12T15:57:52Z) - Global Feature Pyramid Network [1.2473780585666772]
視覚的特徴ピラミッドは、目標検出タスクの有効性と効率性を証明している。
現在の手法では、層間特徴の相互作用を過度に強調し、層内特徴調整の重要な側面を無視する傾向にある。
論文 参考訳(メタデータ) (2023-12-18T14:30:41Z) - Salient Object Detection in Optical Remote Sensing Images Driven by
Transformer [69.22039680783124]
光リモートセンシング画像(ORSI-SOD)のためのGlobal extract Local Exploration Network(GeleNet)を提案する。
具体的には、GeleNetはまずトランスフォーマーバックボーンを採用し、グローバルな長距離依存関係を持つ4レベルの機能埋め込みを生成する。
3つの公開データセットに関する大規模な実験は、提案されたGeleNetが関連する最先端メソッドより優れていることを示している。
論文 参考訳(メタデータ) (2023-09-15T07:14:43Z) - TOPIQ: A Top-down Approach from Semantics to Distortions for Image
Quality Assessment [53.72721476803585]
画像品質評価(IQA)は、ディープニューラルネットワークによる顕著な進歩を目の当たりにしたコンピュータビジョンの基本課題である。
本稿では,高レベルの意味論を用いてIQAネットワークを誘導し,意味的に重要な局所歪み領域に注目するトップダウンアプローチを提案する。
提案手法の重要な要素は,低レベル特徴に対するアテンションマップを算出した,クロススケールアテンション機構である。
論文 参考訳(メタデータ) (2023-08-06T09:08:37Z) - Perception-and-Regulation Network for Salient Object Detection [8.026227647732792]
本稿では,特徴間の相互依存性を明示的にモデル化し,特徴融合プロセスを適応的に制御する新しいグローバルアテンションユニットを提案する。
知覚部は、分類網内の完全に接続された層の構造を用いて、物体のサイズと形状を学習する。
さらに、ネットワークのグローバルな認識能力向上のために、模倣眼観察モジュール(IEO)が使用される。
論文 参考訳(メタデータ) (2021-07-27T02:38:40Z) - Video Salient Object Detection via Adaptive Local-Global Refinement [7.723369608197167]
ビデオ・サリエント・オブジェクト検出(VSOD)は多くの視覚アプリケーションにおいて重要な課題である。
vsodのための適応型局所的グローバルリファインメントフレームワークを提案する。
重み付け手法は特徴相関を更に活用し,ネットワークにより識別的な特徴表現を学習させることができることを示す。
論文 参考訳(メタデータ) (2021-04-29T14:14:11Z) - Global Context Aware RCNN for Object Detection [1.1939762265857436]
我々はGCA (Global Context Aware) RCNNと呼ばれる新しいエンドツーエンドのトレーニング可能なフレームワークを提案する。
GCAフレームワークの中核となるコンポーネントは、グローバルな特徴ピラミッドとアテンション戦略の両方を特徴抽出と特徴改善に使用する、コンテキスト認識メカニズムである。
最後に,モデルの複雑さと計算負担をわずかに増加させる軽量バージョンを提案する。
論文 参考訳(メタデータ) (2020-12-04T14:56:46Z) - Neural Function Modules with Sparse Arguments: A Dynamic Approach to
Integrating Information across Layers [84.57980167400513]
Neural Function Modules (NFM)は、ディープラーニングに同じ構造機能を導入することを目的としている。
トップダウンとボトムアップのフィードバックを組み合わせたフィードフォワードネットワークのコンテキストにおける作業のほとんどは、分類の問題に限られている。
私たちの仕事の重要な貢献は、フレキシブルなアルゴリズムで注意、疎結合、トップダウン、ボトムアップのフィードバックを組み合わせることです。
論文 参考訳(メタデータ) (2020-10-15T20:43:17Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
本稿では,有能な物体検出における進行的融合を改善するために,新しいクロス層特徴ピラミッドネットワークを提案する。
レイヤごとの分散機能は、他のすべてのレイヤからセマンティクスと健全な詳細の両方を同時に所有し、重要な情報の損失を減らします。
論文 参考訳(メタデータ) (2020-02-25T14:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。