論文の概要: Multi-Scale Representation Learning for Spatial Feature Distributions
using Grid Cells
- arxiv url: http://arxiv.org/abs/2003.00824v1
- Date: Sun, 16 Feb 2020 04:22:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 17:32:39.595169
- Title: Multi-Scale Representation Learning for Spatial Feature Distributions
using Grid Cells
- Title(参考訳): 格子セルを用いた空間的特徴分布のマルチスケール表現学習
- Authors: Gengchen Mai, Krzysztof Janowicz, Bo Yan, Rui Zhu, Ling Cai, Ni Lao
- Abstract要約: 本研究では,位置の絶対位置と空間的関係を符号化するスペース2Vecという表現学習モデルを提案する。
その結果、Space2Vecはマルチスケール表現のため、確立されたMLアプローチよりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 11.071527762096053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised text encoding models have recently fueled substantial progress
in NLP. The key idea is to use neural networks to convert words in texts to
vector space representations based on word positions in a sentence and their
contexts, which are suitable for end-to-end training of downstream tasks. We
see a strikingly similar situation in spatial analysis, which focuses on
incorporating both absolute positions and spatial contexts of geographic
objects such as POIs into models. A general-purpose representation model for
space is valuable for a multitude of tasks. However, no such general model
exists to date beyond simply applying discretization or feed-forward nets to
coordinates, and little effort has been put into jointly modeling distributions
with vastly different characteristics, which commonly emerges from GIS data.
Meanwhile, Nobel Prize-winning Neuroscience research shows that grid cells in
mammals provide a multi-scale periodic representation that functions as a
metric for location encoding and is critical for recognizing places and for
path-integration. Therefore, we propose a representation learning model called
Space2Vec to encode the absolute positions and spatial relationships of places.
We conduct experiments on two real-world geographic data for two different
tasks: 1) predicting types of POIs given their positions and context, 2) image
classification leveraging their geo-locations. Results show that because of its
multi-scale representations, Space2Vec outperforms well-established ML
approaches such as RBF kernels, multi-layer feed-forward nets, and tile
embedding approaches for location modeling and image classification tasks.
Detailed analysis shows that all baselines can at most well handle distribution
at one scale but show poor performances in other scales. In contrast,
Space2Vec's multi-scale representation can handle distributions at different
scales.
- Abstract(参考訳): 教師なしのテキスト符号化モデルは、最近NLPの大幅な進歩を加速した。
キーとなるアイデアは、ニューラルネットワークを使用してテキスト中の単語を、下流タスクのエンドツーエンドトレーニングに適した文中の単語の位置とそのコンテキストに基づいてベクトル空間表現に変換することである。
空間分析において、poisのような地理的対象の絶対位置と空間的文脈の両方をモデルに組み込むという、非常に類似した状況がみられる。
空間の汎用表現モデルは、多くのタスクに有用である。
しかし、そのような一般的なモデルは、単に離散化やフィードフォワードネットを座標に適用すること以外には存在せず、GISデータから生じる非常に異なる特性を持つ分布を共同でモデル化する努力はほとんど行われていない。
一方、ノーベル賞受賞の神経科学研究は、哺乳類の格子細胞が位置エンコーディングの指標として機能し、場所の認識と経路統合にとって重要な、多段階の周期的表現を提供することを示している。
そこで本稿では,空間の絶対位置と空間的関係を符号化するSpace2Vecという表現学習モデルを提案する。
実世界の2つの地理的データを2つの異なるタスクで実験する。
1) 位置と文脈が与えられたPOIの種類を予測すること。
2) 位置情報を利用した画像分類
その結果,Space2Vecのマルチスケール表現は,RBFカーネルや多層フィードフォワードネット,位置モデリングや画像分類タスクのためのタイル埋め込みアプローチなど,確立したMLアプローチよりも優れていた。
詳細な分析は、すべてのベースラインが1つのスケールで分布をうまく扱えるが、他のスケールでは性能が劣っていることを示している。
対照的に、Space2Vecのマルチスケール表現は、異なるスケールでの分散を扱うことができる。
関連論文リスト
- TorchSpatial: A Location Encoding Framework and Benchmark for Spatial Representation Learning [36.725822223732635]
位置(ポイント)エンコーディングのための学習フレームワークとベンチマークであるTorchSpatialを提案する。
TorchSpatialには3つの重要なコンポーネントが含まれている: 1) 一般的に認識されている15のロケーションエンコーダを統合する統合されたロケーションエンコーダフレームワーク、2) LocBenchベンチマークタスクは、7つのジオアウェアイメージ分類と4つのジオアウェアイメージ回帰データセットを含む。
論文 参考訳(メタデータ) (2024-06-21T21:33:16Z) - Instance-free Text to Point Cloud Localization with Relative Position Awareness [37.22900045434484]
テキスト・ツー・ポイント・クラウド クロスモーダル・ローカライゼーションは、未来のロボットと人間のコラボレーションにとって重要な視覚言語タスクである。
既存のアプローチの2つの重要な制限に対処する: 1) 地中実例への依存を入力とし、2) 潜在事例間の相対的な位置を無視する。
提案モデルは,テキストセル検索のための粗いステージと位置推定のための微細なステージを含む,2段階のパイプラインに従う。
論文 参考訳(メタデータ) (2024-04-27T09:46:49Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment Function (IFA)は、暗黙の神経表現の急速に拡大するトピックにインスパイアされている。
IFAは機能マップを異なるレベルで暗黙的に整列し、任意の解像度でセグメンテーションマップを生成することができることを示す。
提案手法は,様々なアーキテクチャの改善と組み合わせて,一般的なベンチマークにおける最先端の精度のトレードオフを実現する。
論文 参考訳(メタデータ) (2022-06-17T09:40:14Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
航空画像のセグメンテーションにはいくつかの独特な課題があり、中でも最も重要なものは前景と背景のアンバランスにある。
本稿では,階層的なセグメンテーション手法を採用し,マルチスケール表現を適応的に活用するAdaptive Focus Framework (AF$)を提案する。
AF$は、広く使われている3つの航空ベンチマークの精度を大幅に改善した。
論文 参考訳(メタデータ) (2022-02-18T10:14:45Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
特徴抽出のプロセスを改善するために,新しいコンテキスト集約ネットワーク(CATNet)を提案する。
提案モデルは,高密度特徴ピラミッドネットワーク(DenseFPN),空間コンテキストピラミッド(SCP),階層的関心抽出器(HRoIE)の3つの軽量プラグアンドプレイモジュールを利用する。
論文 参考訳(メタデータ) (2021-11-22T08:55:25Z) - Positional Encoder Graph Neural Networks for Geographic Data [1.840220263320992]
グラフニューラルネットワーク(GNN)は、連続空間データをモデリングするための強力でスケーラブルなソリューションを提供する。
本稿では,空間コンテキストと相関関係をモデルに明示的に組み込んだ新しいフレームワークPE-GNNを提案する。
論文 参考訳(メタデータ) (2021-11-19T10:41:49Z) - HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning [74.76431541169342]
ゼロショット学習(ZSL)は、目に見えないクラス認識の問題に取り組み、目に見えないクラスから目に見えないクラスに意味的な知識を移す。
本稿では,意味領域と視覚領域を協調させる新しい階層型意味視覚適応(HSVA)フレームワークを提案する。
4つのベンチマークデータセットの実験では、HSVAは従来のZSLと一般的なZSLの両方で優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-30T14:27:50Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Region Similarity Representation Learning [94.88055458257081]
Region similarity Representation Learning(ReSim)は、ローカリゼーションベースのタスクに対する自己監視型表現学習の新しいアプローチである。
ReSimはローカリゼーションのための地域表現とセマンティックイメージレベルの表現の両方を学びます。
競合するMoCo-v2ベースラインと比較して、ReSimがローカリゼーションと分類性能を大幅に向上させる表現をどのように学習するかを示します。
論文 参考訳(メタデータ) (2021-03-24T00:42:37Z) - Learning Large-scale Location Embedding From Human Mobility Trajectories
with Graphs [0.0]
本研究では,大規模LBSデータを用いて位置のベクトル表現を学習する。
このモデルは、人間のモビリティと空間情報にコンテキスト情報を組み込む。
GCN-L2Vは、他の場所埋め込み法や下流のGeo-Awareアプリケーションと相補的に適用することができる。
論文 参考訳(メタデータ) (2021-02-23T09:11:33Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
本稿では,潜在特徴空間における局所的一貫性を学習するPGL(PresideedGuided Local)自己教師モデルを提案する。
我々のPGLモデルは、局所領域の特異な表現を学習し、したがって構造情報を保持できる。
論文 参考訳(メタデータ) (2020-11-25T11:03:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。