Learning Texture Invariant Representation for Domain Adaptation of
Semantic Segmentation
- URL: http://arxiv.org/abs/2003.00867v2
- Date: Mon, 30 Mar 2020 06:56:11 GMT
- Title: Learning Texture Invariant Representation for Domain Adaptation of
Semantic Segmentation
- Authors: Myeongjin Kim, Hyeran Byun
- Abstract summary: It is challenging for a model trained with synthetic data to generalize to real data.
We diversity the texture of synthetic images using a style transfer algorithm.
We fine-tune the model with self-training to get direct supervision of the target texture.
- Score: 19.617821473205694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since annotating pixel-level labels for semantic segmentation is laborious,
leveraging synthetic data is an attractive solution. However, due to the domain
gap between synthetic domain and real domain, it is challenging for a model
trained with synthetic data to generalize to real data. In this paper,
considering the fundamental difference between the two domains as the texture,
we propose a method to adapt to the texture of the target domain. First, we
diversity the texture of synthetic images using a style transfer algorithm. The
various textures of generated images prevent a segmentation model from
overfitting to one specific (synthetic) texture. Then, we fine-tune the model
with self-training to get direct supervision of the target texture. Our results
achieve state-of-the-art performance and we analyze the properties of the model
trained on the stylized dataset with extensive experiments.
Related papers
- SynCDR : Training Cross Domain Retrieval Models with Synthetic Data [69.26882668598587]
In cross-domain retrieval, a model is required to identify images from the same semantic category across two visual domains.
We show how to generate synthetic data to fill in these missing category examples across domains.
Our best SynCDR model can outperform prior art by up to 15%.
arXiv Detail & Related papers (2023-12-31T08:06:53Z) - Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
We introduce the first diffusion-based augmentation method for nuclei segmentation.
The idea is to synthesize a large number of labeled images to facilitate training the segmentation model.
The experimental results show that by augmenting 10% labeled real dataset with synthetic samples, one can achieve comparable segmentation results.
arXiv Detail & Related papers (2023-10-22T06:16:16Z) - Compositional Semantic Mix for Domain Adaptation in Point Cloud
Segmentation [65.78246406460305]
compositional semantic mixing represents the first unsupervised domain adaptation technique for point cloud segmentation.
We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world)
arXiv Detail & Related papers (2023-08-28T14:43:36Z) - Controllable Multi-domain Semantic Artwork Synthesis [17.536225601718687]
We propose a dataset that contains 40,000 images of artwork from 4 different domains with their corresponding semantic label maps.
We generate the dataset by first extracting semantic maps from landscape photography.
We then propose a conditional Generative Adrial Network (GAN)-based approach to generate high-quality artwork.
arXiv Detail & Related papers (2023-08-19T21:16:28Z) - Unsupervised Contrastive Domain Adaptation for Semantic Segmentation [75.37470873764855]
We introduce contrastive learning for feature alignment in cross-domain adaptation.
The proposed approach consistently outperforms state-of-the-art methods for domain adaptation.
It achieves 60.2% mIoU on the Cityscapes dataset.
arXiv Detail & Related papers (2022-04-18T16:50:46Z) - Adversarial Semantic Hallucination for Domain Generalized Semantic
Segmentation [50.14933487082085]
We propose an adversarial hallucination approach, which combines a class-wise hallucination module and a semantic segmentation module.
Experiments on state of the art domain adaptation work demonstrate the efficacy of our proposed method when no target domain data are available for training.
arXiv Detail & Related papers (2021-06-08T07:07:45Z) - PixMatch: Unsupervised Domain Adaptation via Pixelwise Consistency
Training [4.336877104987131]
Unsupervised domain adaptation is a promising technique for semantic segmentation.
We present a novel framework for unsupervised domain adaptation based on the notion of target-domain consistency training.
Our approach is simpler, easier to implement, and more memory-efficient during training.
arXiv Detail & Related papers (2021-05-17T19:36:28Z) - Semantically Adaptive Image-to-image Translation for Domain Adaptation
of Semantic Segmentation [1.8275108630751844]
We address the problem of domain adaptation for semantic segmentation of street scenes.
Many state-of-the-art approaches focus on translating the source image while imposing that the result should be semantically consistent with the input.
We advocate that the image semantics can also be exploited to guide the translation algorithm.
arXiv Detail & Related papers (2020-09-02T16:16:50Z) - Domain Adaptation with Morphologic Segmentation [8.0698976170854]
We present a novel domain adaptation framework that uses morphologic segmentation to translate images from arbitrary input domains (real and synthetic) into a uniform output domain.
Our goal is to establish a preprocessing step that unifies data from multiple sources into a common representation.
We showcase the effectiveness of our approach by qualitatively and quantitatively evaluating our method on four data sets of simulated and real data of urban scenes.
arXiv Detail & Related papers (2020-06-16T17:06:02Z) - Style-transfer GANs for bridging the domain gap in synthetic pose
estimator training [8.508403388002133]
We propose to adopt general-purpose GAN models for pixel-level image translation.
The obtained models are then used either during training or inference to bridge the domain gap.
Our evaluation shows a considerable improvement in model performance when compared to a model trained with the same degree of domain randomization.
arXiv Detail & Related papers (2020-04-28T17:35:03Z) - Phase Consistent Ecological Domain Adaptation [76.75730500201536]
We focus on the task of semantic segmentation, where annotated synthetic data are aplenty, but annotating real data is laborious.
The first criterion, inspired by visual psychophysics, is that the map between the two image domains be phase-preserving.
The second criterion aims to leverage ecological statistics, or regularities in the scene which are manifest in any image of it, regardless of the characteristics of the illuminant or the imaging sensor.
arXiv Detail & Related papers (2020-04-10T06:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.