Semantically Adaptive Image-to-image Translation for Domain Adaptation
of Semantic Segmentation
- URL: http://arxiv.org/abs/2009.01166v1
- Date: Wed, 2 Sep 2020 16:16:50 GMT
- Title: Semantically Adaptive Image-to-image Translation for Domain Adaptation
of Semantic Segmentation
- Authors: Luigi Musto and Andrea Zinelli
- Abstract summary: We address the problem of domain adaptation for semantic segmentation of street scenes.
Many state-of-the-art approaches focus on translating the source image while imposing that the result should be semantically consistent with the input.
We advocate that the image semantics can also be exploited to guide the translation algorithm.
- Score: 1.8275108630751844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain shift is a very challenging problem for semantic segmentation. Any
model can be easily trained on synthetic data, where images and labels are
artificially generated, but it will perform poorly when deployed on real
environments. In this paper, we address the problem of domain adaptation for
semantic segmentation of street scenes. Many state-of-the-art approaches focus
on translating the source image while imposing that the result should be
semantically consistent with the input. However, we advocate that the image
semantics can also be exploited to guide the translation algorithm. To this
end, we rethink the generative model to enforce this assumption and strengthen
the connection between pixel-level and feature-level domain alignment. We
conduct extensive experiments by training common semantic segmentation models
with our method and show that the results we obtain on the synthetic-to-real
benchmarks surpass the state-of-the-art.
Related papers
- Unsupervised Domain Adaptation for Semantic Segmentation using One-shot
Image-to-Image Translation via Latent Representation Mixing [9.118706387430883]
We propose a new unsupervised domain adaptation method for the semantic segmentation of very high resolution images.
An image-to-image translation paradigm is proposed, based on an encoder-decoder principle where latent content representations are mixed across domains.
Cross-city comparative experiments have shown that the proposed method outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2022-12-07T18:16:17Z) - Semi-supervised domain adaptation with CycleGAN guided by a downstream
task loss [4.941630596191806]
Domain adaptation is of huge interest as labeling is an expensive and error-prone task.
Image-to-image approaches can be used to mitigate the shift in the input.
We propose a "task aware" version of a GAN in an image-to-image domain adaptation approach.
arXiv Detail & Related papers (2022-08-18T13:13:30Z) - Marginal Contrastive Correspondence for Guided Image Generation [58.0605433671196]
Exemplar-based image translation establishes dense correspondences between a conditional input and an exemplar from two different domains.
Existing work builds the cross-domain correspondences implicitly by minimizing feature-wise distances across the two domains.
We design a Marginal Contrastive Learning Network (MCL-Net) that explores contrastive learning to learn domain-invariant features for realistic exemplar-based image translation.
arXiv Detail & Related papers (2022-04-01T13:55:44Z) - Semantic Consistency in Image-to-Image Translation for Unsupervised
Domain Adaptation [22.269565708490465]
Unsupervised Domain Adaptation (UDA) aims to adapt models trained on a source domain to a new target domain where no labelled data is available.
We propose a semantically consistent image-to-image translation method in combination with a consistency regularisation method for UDA.
arXiv Detail & Related papers (2021-11-05T14:22:20Z) - Affinity Space Adaptation for Semantic Segmentation Across Domains [57.31113934195595]
In this paper, we address the problem of unsupervised domain adaptation (UDA) in semantic segmentation.
Motivated by the fact that source and target domain have invariant semantic structures, we propose to exploit such invariance across domains.
We develop two affinity space adaptation strategies: affinity space cleaning and adversarial affinity space alignment.
arXiv Detail & Related papers (2020-09-26T10:28:11Z) - Cross-domain Correspondence Learning for Exemplar-based Image
Translation [59.35767271091425]
We present a framework for exemplar-based image translation, which synthesizes a photo-realistic image from the input in a distinct domain.
The output has the style (e.g., color, texture) in consistency with the semantically corresponding objects in the exemplar.
We show that our method is superior to state-of-the-art methods in terms of image quality significantly.
arXiv Detail & Related papers (2020-04-12T09:10:57Z) - FDA: Fourier Domain Adaptation for Semantic Segmentation [82.4963423086097]
We describe a simple method for unsupervised domain adaptation, whereby the discrepancy between the source and target distributions is reduced by swapping the low-frequency spectrum of one with the other.
We illustrate the method in semantic segmentation, where densely annotated images are aplenty in one domain, but difficult to obtain in another.
Our results indicate that even simple procedures can discount nuisance variability in the data that more sophisticated methods struggle to learn away.
arXiv Detail & Related papers (2020-04-11T22:20:48Z) - Phase Consistent Ecological Domain Adaptation [76.75730500201536]
We focus on the task of semantic segmentation, where annotated synthetic data are aplenty, but annotating real data is laborious.
The first criterion, inspired by visual psychophysics, is that the map between the two image domains be phase-preserving.
The second criterion aims to leverage ecological statistics, or regularities in the scene which are manifest in any image of it, regardless of the characteristics of the illuminant or the imaging sensor.
arXiv Detail & Related papers (2020-04-10T06:58:03Z) - Learning Texture Invariant Representation for Domain Adaptation of
Semantic Segmentation [19.617821473205694]
It is challenging for a model trained with synthetic data to generalize to real data.
We diversity the texture of synthetic images using a style transfer algorithm.
We fine-tune the model with self-training to get direct supervision of the target texture.
arXiv Detail & Related papers (2020-03-02T13:11:54Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
Unsupervised domain adaptation algorithms aim to transfer the knowledge learned from one domain to another.
We present a novel pixel-wise adversarial domain adaptation algorithm.
arXiv Detail & Related papers (2020-01-09T19:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.