Weakly-supervised Object Localization for Few-shot Learning and
Fine-grained Few-shot Learning
- URL: http://arxiv.org/abs/2003.00874v3
- Date: Sat, 12 Dec 2020 02:50:57 GMT
- Title: Weakly-supervised Object Localization for Few-shot Learning and
Fine-grained Few-shot Learning
- Authors: Xiaojian He, Jinfu Lin, Junming Shen
- Abstract summary: Few-shot learning aims to learn novel visual categories from very few samples.
We propose a Self-Attention Based Complementary Module (SAC Module) to fulfill the weakly-supervised object localization.
We also produce the activated masks for selecting discriminative deep descriptors for few-shot classification.
- Score: 0.5156484100374058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot learning (FSL) aims to learn novel visual categories from very few
samples, which is a challenging problem in real-world applications. Many
methods of few-shot classification work well on general images to learn global
representation. However, they can not deal with fine-grained categories well at
the same time due to a lack of subtle and local information. We argue that
localization is an efficient approach because it directly provides the
discriminative regions, which is critical for both general classification and
fine-grained classification in a low data regime. In this paper, we propose a
Self-Attention Based Complementary Module (SAC Module) to fulfill the
weakly-supervised object localization, and more importantly produce the
activated masks for selecting discriminative deep descriptors for few-shot
classification. Based on each selected deep descriptor, Semantic Alignment
Module (SAM) calculates the semantic alignment distance between the query and
support images to boost classification performance. Extensive experiments show
our method outperforms the state-of-the-art methods on benchmark datasets under
various settings, especially on the fine-grained few-shot tasks. Besides, our
method achieves superior performance over previous methods when training the
model on miniImageNet and evaluating it on the different datasets,
demonstrating its superior generalization capacity. Extra visualization shows
the proposed method can localize the key objects more interval.
Related papers
- Learning to Adapt Category Consistent Meta-Feature of CLIP for Few-Shot Classification [1.6385815610837167]
Recent CLIP-based methods have shown promising zero-shot and few-shot performance on image classification tasks.
We propose the Meta-Feature Adaption method (MF-Adapter) that combines the complementary strengths of both LRs and high-level semantic representations.
Our proposed method is superior to the state-of-the-art CLIP downstream few-shot classification methods, even showing stronger performance on a set of challenging visual classification tasks.
arXiv Detail & Related papers (2024-07-08T06:18:04Z) - Disambiguation of One-Shot Visual Classification Tasks: A Simplex-Based
Approach [8.436437583394998]
We present a strategy which aims at detecting the presence of multiple objects in a given shot.
This strategy is based on identifying the corners of a simplex in a high dimensional space.
We show the ability of the proposed method to slightly, yet statistically significantly, improve accuracy in extreme settings.
arXiv Detail & Related papers (2023-01-16T11:37:05Z) - A Task-aware Dual Similarity Network for Fine-grained Few-shot Learning [19.90385022248391]
Task-aware Dual Similarity Network( TDSNet) proposed to explore global invariant features and discriminative local details.
TDSNet achieves competitive performance by comparing with other state-of-the-art algorithms.
arXiv Detail & Related papers (2022-10-22T04:24:55Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot image classification aims to utilize pretrained knowledge learned from a large-scale dataset to tackle a series of downstream classification tasks.
We propose COSOC, a novel Few-Shot Learning framework, to automatically figure out foreground objects at both pretraining and evaluation stage.
arXiv Detail & Related papers (2021-07-16T07:46:41Z) - Revisiting Deep Local Descriptor for Improved Few-Shot Classification [56.74552164206737]
We show how one can improve the quality of embeddings by leveraging textbfDense textbfClassification and textbfAttentive textbfPooling.
We suggest to pool feature maps by applying attentive pooling instead of the widely used global average pooling (GAP) to prepare embeddings for few-shot classification.
arXiv Detail & Related papers (2021-03-30T00:48:28Z) - Multi-scale Adaptive Task Attention Network for Few-Shot Learning [5.861206243996454]
The goal of few-shot learning is to classify unseen categories with few labeled samples.
This paper proposes a novel Multi-scale Adaptive Task Attention Network (MATANet) for few-shot learning.
arXiv Detail & Related papers (2020-11-30T00:36:01Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
We propose a novel few-shot learning method via optimizing and fast adapting the query sample representation based on very few reference samples.
As demonstrated experimentally, the proposed model achieves state-of-the-art classification results on various benchmark few-shot classification and fine-grained recognition datasets.
arXiv Detail & Related papers (2020-08-06T05:52:59Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
We study the impact of scale and location mismatch in the few-shot learning scenario.
We propose a novel Spatially-aware Matching scheme to effectively perform matching across multiple scales and locations.
arXiv Detail & Related papers (2020-01-06T14:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.