UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation
- URL: http://arxiv.org/abs/2006.07502v3
- Date: Wed, 3 Mar 2021 20:34:48 GMT
- Title: UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation
- Authors: Siddhesh Khandelwal, Raghav Goyal, Leonid Sigal
- Abstract summary: Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
- Score: 52.487469544343305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Methods for object detection and segmentation rely on large scale
instance-level annotations for training, which are difficult and time-consuming
to collect. Efforts to alleviate this look at varying degrees and quality of
supervision. Weakly-supervised approaches draw on image-level labels to build
detectors/segmentors, while zero/few-shot methods assume abundant
instance-level data for a set of base classes, and none to a few examples for
novel classes. This taxonomy has largely siloed algorithmic designs. In this
work, we aim to bridge this divide by proposing an intuitive and unified
semi-supervised model that is applicable to a range of supervision: from zero
to a few instance-level samples per novel class. For base classes, our model
learns a mapping from weakly-supervised to fully-supervised
detectors/segmentors. By learning and leveraging visual and lingual
similarities between the novel and base classes, we transfer those mappings to
obtain detectors/segmentors for novel classes; refining them with a few novel
class instance-level annotated samples, if available. The overall model is
end-to-end trainable and highly flexible. Through extensive experiments on
MS-COCO and Pascal VOC benchmark datasets we show improved performance in a
variety of settings.
Related papers
- Integrated Image-Text Based on Semi-supervised Learning for Small Sample Instance Segmentation [1.3157419797035321]
The article proposes a novel small sample instance segmentation solution from the perspective of maximizing the utilization of existing information.
First, it helps the model fully utilize unlabeled data by learning to generate pseudo labels, increasing the number of available samples.
Second, by integrating the features of text and image, more accurate classification results can be obtained.
arXiv Detail & Related papers (2024-10-21T14:44:08Z) - LC-Protonets: Multi-label Few-shot learning for world music audio tagging [65.72891334156706]
We introduce Label-Combination Prototypical Networks (LC-Protonets) to address the problem of multi-label few-shot classification.
LC-Protonets generate one prototype per label combination, derived from the power set of labels present in the limited training items.
Our method is applied to automatic audio tagging across diverse music datasets, covering various cultures and including both modern and traditional music.
arXiv Detail & Related papers (2024-09-17T15:13:07Z) - Investigating Self-Supervised Methods for Label-Efficient Learning [27.029542823306866]
We study different self supervised pretext tasks, namely contrastive learning, clustering, and masked image modelling for their low-shot capabilities.
We introduce a framework involving both mask image modelling and clustering as pretext tasks, which performs better across all low-shot downstream tasks.
When testing the model on full scale datasets, we show performance gains in multi-class classification, multi-label classification and semantic segmentation.
arXiv Detail & Related papers (2024-06-25T10:56:03Z) - Towards Few-Annotation Learning for Object Detection: Are
Transformer-based Models More Efficient ? [11.416621957617334]
In this paper, we propose a semi-supervised method tailored for the current state-of-the-art object detector Deformable DETR.
We evaluate our method on the semi-supervised object detection benchmarks COCO and Pascal VOC, and it outperforms previous methods, especially when annotations are scarce.
arXiv Detail & Related papers (2023-10-30T18:51:25Z) - Rethinking Multiple Instance Learning for Whole Slide Image Classification: A Good Instance Classifier is All You Need [18.832471712088353]
We propose an instance-level weakly supervised contrastive learning algorithm for the first time under the MIL setting.
We also propose an accurate pseudo label generation method through prototype learning.
arXiv Detail & Related papers (2023-07-05T12:44:52Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
We present the first weakly-supervised approach to the salient instance detection problem.
We propose a novel weakly-supervised network with three branches: a Saliency Detection Branch leveraging class consistency information to locate candidate objects; a Boundary Detection Branch exploiting class discrepancy information to delineate object boundaries; and a Centroid Detection Branch using subitizing information to detect salient instance centroids.
arXiv Detail & Related papers (2021-11-19T10:15:22Z) - Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions [25.408505612498423]
We propose a novel and principled semi-supervised active learning framework for instance segmentation.
Specifically, we present an uncertainty sampling strategy named Triplet Scoring Predictions (TSP) to explicitly incorporate samples ranking clues from classes, bounding boxes and masks.
Results on medical images datasets demonstrate that the proposed method results in the embodiment of knowledge from available data in a meaningful way.
arXiv Detail & Related papers (2020-12-09T02:36:52Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - A Few-Shot Sequential Approach for Object Counting [63.82757025821265]
We introduce a class attention mechanism that sequentially attends to objects in the image and extracts their relevant features.
The proposed technique is trained on point-level annotations and uses a novel loss function that disentangles class-dependent and class-agnostic aspects of the model.
We present our results on a variety of object-counting/detection datasets, including FSOD and MS COCO.
arXiv Detail & Related papers (2020-07-03T18:23:39Z) - Incremental Few-Shot Object Detection [96.02543873402813]
OpeN-ended Centre nEt is a detector for incrementally learning to detect class objects with few examples.
ONCE fully respects the incremental learning paradigm, with novel class registration requiring only a single forward pass of few-shot training samples.
arXiv Detail & Related papers (2020-03-10T12:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.