論文の概要: Distributed Cooperative Decision Making in Multi-agent Multi-armed
Bandits
- arxiv url: http://arxiv.org/abs/2003.01312v2
- Date: Tue, 11 Aug 2020 19:54:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 22:25:51.293487
- Title: Distributed Cooperative Decision Making in Multi-agent Multi-armed
Bandits
- Title(参考訳): マルチエージェントマルチアームバンドにおける分散協調決定
- Authors: Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard
- Abstract要約: 複数のエージェントが同じバンディット(MAB)に直面している分散意思決定問題について検討する。
我々は,各アームの平均報酬を協調的に推定するための動的,コンセンサスに基づく分散推定アルゴリズムを設計する。
両アルゴリズムが中心核融合センターの性能に近いグループ性能を達成することを示す。
- 参考スコア(独自算出の注目度): 6.437761597996503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a distributed decision-making problem in which multiple agents face
the same multi-armed bandit (MAB), and each agent makes sequential choices
among arms to maximize its own individual reward. The agents cooperate by
sharing their estimates over a fixed communication graph. We consider an
unconstrained reward model in which two or more agents can choose the same arm
and collect independent rewards. And we consider a constrained reward model in
which agents that choose the same arm at the same time receive no reward. We
design a dynamic, consensus-based, distributed estimation algorithm for
cooperative estimation of mean rewards at each arm. We leverage the estimates
from this algorithm to develop two distributed algorithms: coop-UCB2 and
coop-UCB2-selective-learning, for the unconstrained and constrained reward
models, respectively. We show that both algorithms achieve group performance
close to the performance of a centralized fusion center. Further, we
investigate the influence of the communication graph structure on performance.
We propose a novel graph explore-exploit index that predicts the relative
performance of groups in terms of the communication graph, and we propose a
novel nodal explore-exploit centrality index that predicts the relative
performance of agents in terms of the agent locations in the communication
graph.
- Abstract(参考訳): 本研究では,複数のエージェントが同一のマルチアーム・バンディット(mab)に対面し,各エージェントがそれぞれの報酬を最大化するために武器間で順次選択する分散意思決定問題について検討する。
エージェントは、固定された通信グラフ上で見積を共有して協力する。
2人以上のエージェントが同じ腕を選択し、独立した報酬を収集できる、制約のない報酬モデルを考える。
同時に同じ腕を選択するエージェントが報酬を受け取らないような、制約付きの報酬モデルも検討する。
各アームの平均報酬を協調的に推定するための動的コンセンサスに基づく分散推定アルゴリズムを設計した。
我々は,このアルゴリズムによる推定を活用し,coop-ucb2とcoop-ucb2-selective-learningの2つの分散アルゴリズムを開発した。
両アルゴリズムが集中型核融合センターの性能に近いグループ性能を達成することを示す。
さらに,通信グラフ構造が性能に与える影響についても検討する。
本稿では,コミュニケーショングラフを用いてグループ間の相対的なパフォーマンスを予測する新しいグラフ探索探索指数を提案し,コミュニケーショングラフ内のエージェント位置からエージェント間の相対的なパフォーマンスを予測する新しいノード探索探索探索探索中心性指数を提案する。
関連論文リスト
- Multi-Agent Best Arm Identification in Stochastic Linear Bandits [0.7673339435080443]
固定予算シナリオ下での線形包帯における協調的ベストアーム識別の問題について検討する。
学習モデルでは、複数のエージェントがスターネットワークまたはジェネリックネットワークを介して接続され、線形バンディットインスタンスと並列に相互作用すると考えられる。
我々は、スターネットワークとジェネリックネットワークのためのアルゴリズムMaLinBAI-StarとMaLinBAI-Genをそれぞれ考案した。
論文 参考訳(メタデータ) (2024-11-20T20:09:44Z) - Scalable Decentralized Algorithms for Online Personalized Mean Estimation [12.002609934938224]
本研究は,各エージェントが実数値分布からサンプルを収集し,その平均値を推定する,オーバーアーキシング問題の簡易版に焦点を当てた。
1つは信念の伝播からインスピレーションを得ており、もう1つはコンセンサスに基づくアプローチを採用している。
論文 参考訳(メタデータ) (2024-02-20T08:30:46Z) - Pure Exploration under Mediators' Feedback [63.56002444692792]
マルチアームバンディット(Multi-armed bandits)は、各インタラクションステップにおいて、学習者が腕を選択し、報酬を観察する、シーケンシャルな意思決定フレームワークである。
本稿では,学習者が仲介者の集合にアクセスできるシナリオについて考察する。
本稿では,学習者には仲介者の方針が知られていると仮定して,最適な腕を発見するための逐次的意思決定戦略を提案する。
論文 参考訳(メタデータ) (2023-08-29T18:18:21Z) - Distributed Consensus Algorithm for Decision-Making in Multi-agent
Multi-armed Bandit [7.708904950194129]
動的環境におけるマルチエージェント・マルチアーム・バンディット(MAMAB)問題について検討する。
グラフはエージェント間の情報共有構造を反映し、腕の報酬分布はいくつかの未知の変化点を持つ断片的に定常である。
目的は、後悔を最小限に抑えるエージェントのための意思決定ポリシーを開発することである。
論文 参考訳(メタデータ) (2023-06-09T16:10:26Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z) - Federated Learning for Heterogeneous Bandits with Unobserved Contexts [0.0]
我々は、未知のコンテキストを持つ多腕コンテキスト包帯のフェデレーション問題について検討する。
線形パラメタライズされた報酬関数に対して,除去に基づくアルゴリズムを提案し,後悔の束縛を証明した。
論文 参考訳(メタデータ) (2023-03-29T22:06:24Z) - Incentive-Aware Recommender Systems in Two-Sided Markets [49.692453629365204]
最適性能を達成しつつエージェントのインセンティブと整合する新しいレコメンデータシステムを提案する。
我々のフレームワークは、このインセンティブを意識したシステムを、両側市場におけるマルチエージェントバンディット問題としてモデル化する。
どちらのアルゴリズムも、エージェントが過剰な露出から保護する、ポストフェアネス基準を満たす。
論文 参考訳(メタデータ) (2022-11-23T22:20:12Z) - Distributed Stochastic Bandit Learning with Context Distributions [0.0]
本研究では,未知のコンテキストを持つ分散マルチアームコンテキスト帯域幅の問題について検討する。
本モデルでは, エージェントはコンテキスト分布のみを観察し, エージェントに正確なコンテキストが不明である。
我々のゴールは、累積報酬を最大化するために最適な行動列を選択する分散アルゴリズムを開発することである。
論文 参考訳(メタデータ) (2022-07-28T22:00:11Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
本稿では,バンディットフィードバックを用いたオンラインクラスタリングの問題点について考察する。
これは、NPハード重み付きクラスタリング問題をサブルーチンとして解決する必要性を回避するための、シーケンシャルなテストのための新しい停止規則を含む。
合成および実世界のデータセットの広範なシミュレーションを通して、BOCの性能は下界と一致し、非適応的ベースラインアルゴリズムよりも大幅に優れることを示す。
論文 参考訳(メタデータ) (2022-02-09T06:05:05Z) - Emergence of Theory of Mind Collaboration in Multiagent Systems [65.97255691640561]
ToMとエージェント間の効果的な協調を開発するための適応的学習アルゴリズムを提案する。
アルゴリズムはToMをモデル化せずに従来の分散実行アルゴリズムを全て上回る2つのゲームで評価する。
論文 参考訳(メタデータ) (2021-09-30T23:28:00Z) - Efficient Pure Exploration for Combinatorial Bandits with Semi-Bandit
Feedback [51.21673420940346]
コンビナーシャルバンディットはマルチアームバンディットを一般化し、エージェントが腕のセットを選択し、選択したセットに含まれる各腕の騒々しい報酬を観察します。
我々は, 最善の腕を一定の信頼度で識別する純粋爆発問題と, 応答集合の構造が動作集合の1つと異なるような, より一般的な設定に注目する。
有限多面体に対するプロジェクションフリーオンライン学習アルゴリズムに基づいて、凸的に最適であり、競争力のある経験的性能を持つ最初の計算効率の良いアルゴリズムである。
論文 参考訳(メタデータ) (2021-01-21T10:35:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。