Contention Window Optimization in IEEE 802.11ax Networks with Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2003.01492v5
- Date: Fri, 4 Feb 2022 13:16:11 GMT
- Title: Contention Window Optimization in IEEE 802.11ax Networks with Deep
Reinforcement Learning
- Authors: Witold Wydma\'nski and Szymon Szott
- Abstract summary: We propose a new method of CW control, which leverages deep reinforcement learning (DRL) principles to learn the correct settings under different network conditions.
Our method, called centralized contention window optimization with DRL (CCOD), supports two trainable control algorithms.
- Score: 2.869669835645836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proper setting of contention window (CW) values has a significant impact
on the efficiency of Wi-Fi networks. Unfortunately, the standard method used by
802.11 networks is not scalable enough to maintain stable throughput for an
increasing number of stations, yet it remains the default method of channel
access for 802.11ax single-user transmissions. Therefore, we propose a new
method of CW control, which leverages deep reinforcement learning (DRL)
principles to learn the correct settings under different network conditions.
Our method, called centralized contention window optimization with DRL (CCOD),
supports two trainable control algorithms: deep Q-network (DQN) and deep
deterministic policy gradient (DDPG). We demonstrate through simulations that
it offers efficiency close to optimal (even in dynamic topologies) while
keeping computational cost low.
Related papers
- Coverage-aware and Reinforcement Learning Using Multi-agent Approach for HD Map QoS in a Realistic Environment [8.853779271331508]
One effective way to optimize the offloading process is by minimizing the transmission time.
This is particularly true in a Vehicular Adhoc Network (VANET) where vehicles frequently download and upload High-definition (HD) map data.
arXiv Detail & Related papers (2024-07-19T12:40:07Z) - A Deep Reinforcement Learning Approach for Adaptive Traffic Routing in
Next-gen Networks [1.1586742546971471]
Next-gen networks require automation and adaptively adjust network configuration based on traffic dynamics.
Traditional techniques that decide traffic policies are usually based on hand-crafted programming optimization and algorithms.
We develop a deep reinforcement learning (DRL) approach for adaptive traffic routing.
arXiv Detail & Related papers (2024-02-07T01:48:29Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Unsupervised Deep Unfolded PGD for Transmit Power Allocation in Wireless
Systems [0.6091702876917281]
We propose a simple low-complexity TPC algorithm based on the deep unfolding of the iterative projected gradient (PGD) algorithm into layers of a deep neural network and learning the step-size parameters.
Performance evaluation in dense device-to-device (D2D) communication scenarios showed that the proposed method can achieve better performance than the iterative algorithm with more than a factor of 2 lower number of iterations.
arXiv Detail & Related papers (2023-06-20T19:51:21Z) - A Reinforcement Learning Approach to Optimize Available Network
Bandwidth Utilization [3.254879465902239]
We present a novel approach to finding the optimum number of parallel TCP streams using deep reinforcement learning (RL)
Our RL-based algorithm can find near-optimal solutions 40% faster while achieving up to 15% higher throughput.
arXiv Detail & Related papers (2022-11-22T02:00:05Z) - Searching for Network Width with Bilaterally Coupled Network [75.43658047510334]
We introduce a new supernet called Bilaterally Coupled Network (BCNet) to address this issue.
In BCNet, each channel is fairly trained and responsible for the same amount of network widths, thus each network width can be evaluated more accurately.
We propose the first open-source width benchmark on macro structures named Channel-Bench-Macro for the better comparison of width search algorithms.
arXiv Detail & Related papers (2022-03-25T15:32:46Z) - Learning Resilient Radio Resource Management Policies with Graph Neural
Networks [124.89036526192268]
We formulate a resilient radio resource management problem with per-user minimum-capacity constraints.
We show that we can parameterize the user selection and power control policies using a finite set of parameters.
Thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the 5th percentile rate.
arXiv Detail & Related papers (2022-03-07T19:40:39Z) - CATRO: Channel Pruning via Class-Aware Trace Ratio Optimization [61.71504948770445]
We propose a novel channel pruning method via Class-Aware Trace Ratio Optimization (CATRO) to reduce the computational burden and accelerate the model inference.
We show that CATRO achieves higher accuracy with similar cost or lower cost with similar accuracy than other state-of-the-art channel pruning algorithms.
Because of its class-aware property, CATRO is suitable to prune efficient networks adaptively for various classification subtasks, enhancing handy deployment and usage of deep networks in real-world applications.
arXiv Detail & Related papers (2021-10-21T06:26:31Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
We propose a framework for the optimization of the resource allocation in multi-channel cellular systems with device-to-device (D2D) communication.
A deep learning (DL) framework is proposed, where the optimal resource allocation strategy for arbitrary channel conditions is approximated by deep neural network (DNN) models.
Our simulation results confirm that near-optimal performance can be attained with low time, which underlines the real-time capability of the proposed scheme.
arXiv Detail & Related papers (2020-11-25T14:19:23Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
We consider the problem of downlink power control in wireless networks, consisting of multiple transmitter-receiver pairs communicating over a single shared wireless medium.
To mitigate the interference among concurrent transmissions, we leverage the network topology to create a graph neural network architecture.
We then use an unsupervised primal-dual counterfactual optimization approach to learn optimal power allocation decisions.
arXiv Detail & Related papers (2020-02-17T07:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.