Coverage-aware and Reinforcement Learning Using Multi-agent Approach for HD Map QoS in a Realistic Environment
- URL: http://arxiv.org/abs/2408.03329v1
- Date: Fri, 19 Jul 2024 12:40:07 GMT
- Title: Coverage-aware and Reinforcement Learning Using Multi-agent Approach for HD Map QoS in a Realistic Environment
- Authors: Jeffrey Redondo, Zhenhui Yuan, Nauman Aslam, Juan Zhang,
- Abstract summary: One effective way to optimize the offloading process is by minimizing the transmission time.
This is particularly true in a Vehicular Adhoc Network (VANET) where vehicles frequently download and upload High-definition (HD) map data.
- Score: 8.853779271331508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One effective way to optimize the offloading process is by minimizing the transmission time. This is particularly true in a Vehicular Adhoc Network (VANET) where vehicles frequently download and upload High-definition (HD) map data which requires constant updates. This implies that latency and throughput requirements must be guaranteed by the wireless system. To achieve this, adjustable contention windows (CW) allocation strategies in the standard IEEE802.11p have been explored by numerous researchers. Nevertheless, their implementations demand alterations to the existing standard which is not always desirable. To address this issue, we proposed a Q-Learning algorithm that operates at the application layer. Moreover, it could be deployed in any wireless network thereby mitigating the compatibility issues. The solution has demonstrated a better network performance with relatively fewer optimization requirements as compared to the Deep Q Network (DQN) and Actor-Critic algorithms. The same is observed while evaluating the model in a multi-agent setup showing higher performance compared to the single-agent setup.
Related papers
- DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
We propose a customized wireless network intent (WNI-G) model to address different state variations of wireless communication networks.
Extensive simulation achieves greater stability in spectral efficiency and variations of traditional DRL models in dynamic communication systems.
arXiv Detail & Related papers (2024-10-18T14:04:38Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Multi-agent Assessment with QoS Enhancement for HD Map Updates in a Vehicular Network [8.853779271331508]
Reinforcement Learning (RL) algorithms have been used to address the challenging problems in the offloading process of vehicular ad hoc networks (VANET)
Deep Q-learning (DQN) and Actor-critic at the autonomous vehicle (AV) may lead to an increase in the computational load, causing a heavy burden on the computational devices and higher costs.
In this paper, we assess the scalability of an application utilizing a Q-learning single-agent solution in a distributed multi-agent environment.
arXiv Detail & Related papers (2024-07-31T09:17:09Z) - Intelligent O-RAN Traffic Steering for URLLC Through Deep Reinforcement
Learning [3.59419219139168]
Open RAN (O-RAN) is a promising paradigm for building an intelligent RAN architecture.
This paper presents a Machine Learning (ML)-based Traffic Steering (TS) scheme to predict network congestion and then steer O-RAN traffic to avoid it and reduce the expected delay.
Our solution is evaluated against traditional reactive TS approaches that are offered as xApps in O-RAN and shows an average of 15.81 percent decrease in queuing delay across all deployed SFCs.
arXiv Detail & Related papers (2023-03-03T14:34:25Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs [64.26714148634228]
congestion control (CC) algorithms become extremely difficult to design.
It is currently not possible to deploy AI models on network devices due to their limited computational capabilities.
We build a computationally-light solution based on a recent reinforcement learning CC algorithm.
arXiv Detail & Related papers (2022-07-05T20:42:24Z) - QoS-SLA-Aware Artificial Intelligence Adaptive Genetic Algorithm for
Multi-Request Offloading in Integrated Edge-Cloud Computing System for the
Internet of Vehicles [14.978000952939404]
Internet of Vehicles (IoV) over Vehicular Ad-hoc Networks (VANETS) is an emerging technology enabling the development of smart cities applications for safer, efficient, and pleasant travel.
Considering vehicles limited computational and storage capabilities, applications requests are offloaded into an integrated edge-cloud computing system.
This paper proposes a novel Artificial Intelligence (AI) deadline-SLA-aware genetic algorithm (GA) for multi-request offloading in a heterogeneous edge-cloud computing system.
arXiv Detail & Related papers (2022-01-21T10:11:55Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity.
One of the main challenges comes from the real-time implementation of these algorithms.
This paper explores the acceleration of APSM-based algorithms through massive parallelization.
arXiv Detail & Related papers (2022-01-13T15:20:45Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Deep Reinforcement Learning for Adaptive Network Slicing in 5G for
Intelligent Vehicular Systems and Smart Cities [19.723551683930776]
We develop a network slicing model based on a cluster of fog nodes (FNs) coordinated with an edge controller (EC)
For each service request in a cluster, the EC decides which FN to execute the task, locally serve the request at the edge, or to reject the task and refer it to the cloud.
We propose a deep reinforcement learning (DRL) solution to adaptively learn the optimal slicing policy.
arXiv Detail & Related papers (2020-10-19T23:30:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.