論文の概要: The iCub multisensor datasets for robot and computer vision applications
- arxiv url: http://arxiv.org/abs/2003.01994v1
- Date: Wed, 4 Mar 2020 10:59:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 12:59:06.956508
- Title: The iCub multisensor datasets for robot and computer vision applications
- Title(参考訳): ロボットとコンピュータビジョンのためのiCubマルチセンサデータセット
- Authors: Murat Kirtay, Ugo Albanese, Lorenzo Vannucci, Guido Schillaci, Cecilia
Laschi, Egidio Falotico
- Abstract要約: この文書は、追加の深度センサとカラーカメラを備えたiCubロボットを用いて構築された新しいデータセットを提示する。
我々は,210個の物体の色と深度情報を取得するために,このロボットを使用した。
- 参考スコア(独自算出の注目度): 0.7340017786387767
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This document presents novel datasets, constructed by employing the iCub
robot equipped with an additional depth sensor and color camera. We used the
robot to acquire color and depth information for 210 objects in different
acquisition scenarios. At this end, the results were large scale datasets for
robot and computer vision applications: object representation, object
recognition and classification, and action recognition.
- Abstract(参考訳): この文書は、追加の深度センサーとカラーカメラを備えたiCubロボットを用いて構築された新しいデータセットを提示する。
210個の物体の色と深度情報を取得するために,このロボットを用いた。
この結果、ロボットとコンピュータビジョンのアプリケーションのための大規模データセット(オブジェクト表現、オブジェクト認識と分類、アクション認識)が得られた。
関連論文リスト
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
微分可能シミュレーションは、システム識別の強力なツールとなっている。
本手法は,オブジェクト自体のデータに頼ることなく,ロボットからの情報を用いてオブジェクト特性を校正する。
低コストなロボットプラットフォームにおける本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-04T20:48:38Z) - Polaris: Open-ended Interactive Robotic Manipulation via Syn2Real Visual Grounding and Large Language Models [53.22792173053473]
我々はPolarisという対話型ロボット操作フレームワークを紹介した。
ポラリスはGPT-4と接地された視覚モデルを利用して知覚と相互作用を統合する。
本稿では,Syn2Real(Synthetic-to-Real)ポーズ推定パイプラインを提案する。
論文 参考訳(メタデータ) (2024-08-15T06:40:38Z) - Multimodal Anomaly Detection based on Deep Auto-Encoder for Object Slip
Perception of Mobile Manipulation Robots [22.63980025871784]
提案フレームワークは,RGBや深度カメラ,マイク,力トルクセンサなど,さまざまなロボットセンサから収集した異種データストリームを統合する。
統合されたデータは、ディープオートエンコーダを訓練して、通常の状態を示す多感覚データの潜在表現を構築するために使用される。
次に、トレーニングされたエンコーダの潜伏値と再構成された入力データの潜伏値との差によって測定された誤差スコアによって異常を識別することができる。
論文 参考訳(メタデータ) (2024-03-06T09:15:53Z) - Teaching Unknown Objects by Leveraging Human Gaze and Augmented Reality
in Human-Robot Interaction [3.1473798197405953]
この論文は、人間-ロボットインタラクション(HRI)の文脈で未知の物体を教えることを目的としている。
視線追跡と拡張現実(Augmented Reality)を組み合わせることで、人間の教師がロボットとコミュニケーションできる強力なシナジーが生まれました。
ロボットの物体検出能力は、広範囲なデータセットで訓練された最先端の物体検出器に匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-12-12T11:34:43Z) - Polybot: Training One Policy Across Robots While Embracing Variability [70.74462430582163]
複数のロボットプラットフォームにデプロイするための単一のポリシーをトレーニングするための重要な設計決定セットを提案する。
われわれのフレームワークは、まず、手首カメラを利用して、我々のポリシーの観察空間と行動空間を具体化して調整する。
6つのタスクと3つのロボットにまたがる60時間以上のデータセットを用いて,関節の形状や大きさの異なるデータセットの評価を行った。
論文 参考訳(メタデータ) (2023-07-07T17:21:16Z) - HabitatDyn Dataset: Dynamic Object Detection to Kinematics Estimation [16.36110033895749]
本稿では,合成RGBビデオ,セマンティックラベル,深度情報,および運動情報を含むデータセットHabitatDynを提案する。
HabitatDynは移動カメラを搭載した移動ロボットの視点で作られ、6種類の移動物体をさまざまな速度で撮影する30のシーンを含んでいる。
論文 参考訳(メタデータ) (2023-04-21T09:57:35Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
我々は,有望なスケーラブルなモデル特性を示す,ロボティクストランスフォーマーと呼ばれるモデルクラスを提示する。
実世界の課題を遂行する実ロボットの大規模データ収集に基づいて,様々なモデルクラスと,データサイズ,モデルサイズ,データの多様性の関数として一般化する能力について検証した。
論文 参考訳(メタデータ) (2022-12-13T18:55:15Z) - Learn to Predict How Humans Manipulate Large-sized Objects from
Interactive Motions [82.90906153293585]
本稿では,動きデータと動的記述子を融合させるグラフニューラルネットワークHO-GCNを提案する。
動的記述子を消費するネットワークは、最先端の予測結果が得られ、未確認オブジェクトへのネットワークの一般化に役立つことを示す。
論文 参考訳(メタデータ) (2022-06-25T09:55:39Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
本稿では,物理に基づくメタバース合成による視覚駆動型ロボットグルーピングのための大規模ベンチマークデータセットを提案する。
提案するデータセットには,10万の画像と25種類のオブジェクトが含まれている。
また,オブジェクト検出とセグメンテーション性能を評価するためのデータセットとともに,新しいレイアウト重み付け性能指標を提案する。
論文 参考訳(メタデータ) (2021-12-29T17:23:24Z) - Multimodal Material Classification for Robots using Spectroscopy and
High Resolution Texture Imaging [14.458436940557924]
近赤外分光法と近距離高分解能テクスチャイメージングを利用したマルチモーダルセンシング技術を提案する。
この表現により、ロボットは従来の最先端のアプローチと比較して、より優れた性能で材料を認識できることが示される。
論文 参考訳(メタデータ) (2020-04-02T17:33:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。