論文の概要: Vehicle-Human Interactive Behaviors in Emergency: Data Extraction from
Traffic Accident Videos
- arxiv url: http://arxiv.org/abs/2003.02059v2
- Date: Wed, 12 Aug 2020 04:10:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 06:07:50.614160
- Title: Vehicle-Human Interactive Behaviors in Emergency: Data Extraction from
Traffic Accident Videos
- Title(参考訳): 緊急時の自動車と人間の対話行動:交通事故映像からのデータ抽出
- Authors: Wansong Liu, Danyang Luo, Changxu Wu, Minghui Zheng
- Abstract要約: 現在、緊急時の車両と人間の対話行動を研究するには、ほとんど利用できない実際の緊急状況において、大量のデータセットが必要である。
本稿では,実際の事故映像から対話行動データ(車と人間の軌跡)を抽出する,しかし便利な方法を提案する。
リアルタイムの事故ビデオからデータを抽出する主な課題は、記録カメラが校正されておらず、監視の角度が不明であるという事実にある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, studying the vehicle-human interactive behavior in the emergency
needs a large amount of datasets in the actual emergent situations that are
almost unavailable. Existing public data sources on autonomous vehicles (AVs)
mainly focus either on the normal driving scenarios or on emergency situations
without human involvement. To fill this gap and facilitate related research,
this paper provides a new yet convenient way to extract the interactive
behavior data (i.e., the trajectories of vehicles and humans) from actual
accident videos that were captured by both the surveillance cameras and driving
recorders. The main challenge for data extraction from real-time accident video
lies in the fact that the recording cameras are un-calibrated and the angles of
surveillance are unknown. The approach proposed in this paper employs image
processing to obtain a new perspective which is different from the original
video's perspective. Meanwhile, we manually detect and mark object feature
points in each image frame. In order to acquire a gradient of reference ratios,
a geometric model is implemented in the analysis of reference pixel value, and
the feature points are then scaled to the object trajectory based on the
gradient of ratios. The generated trajectories not only restore the object
movements completely but also reflect changes in vehicle velocity and rotation
based on the feature points distributions.
- Abstract(参考訳): 現在、緊急時の車両と人間の対話行動を研究するには、ほとんど利用できない実際の緊急状況において大量のデータセットが必要である。
既存の自動運転車(AV)の公共データソースは主に通常の運転シナリオか、人間の関与なしに緊急状況に焦点を当てている。
このギャップを埋め、関連する研究を容易にするために、監視カメラと運転記録装置の両方で撮影された実際の事故映像から、インタラクティブな行動データ(すなわち車両と人間の軌跡)を抽出するための、新しい、かつ便利な方法を提案する。
リアルタイム事故映像からのデータ抽出の最大の課題は、記録カメラが非対応であり、監視の角度が不明であることだ。
本稿では,従来の映像と異なる新たな視点を得るために,画像処理を用いたアプローチを提案する。
一方,各画像フレームの物体特徴点を手作業で検出・マークする。
基準比の勾配を得るために、基準画素値の解析に幾何学モデルを実装し、比の勾配に基づいて特徴点を対象軌道にスケールする。
生成した軌道は、物体の動きを完全に復元するだけでなく、特徴点分布に基づいて車両の速度と回転の変化を反映する。
関連論文リスト
- Application of 2D Homography for High Resolution Traffic Data Collection
using CCTV Cameras [9.946460710450319]
本研究では,CCTVカメラから高精細なトラフィックデータを抽出するための3段階のビデオ分析フレームワークを実装した。
このフレームワークの主要な構成要素は、オブジェクト認識、視点変換、車両軌道再構成である。
その結果, カメラ推定値間の速度偏差は10%以下で, 方向トラフィック数では+/-4.5%の誤差率を示した。
論文 参考訳(メタデータ) (2024-01-14T07:33:14Z) - A Memory-Augmented Multi-Task Collaborative Framework for Unsupervised
Traffic Accident Detection in Driving Videos [22.553356096143734]
本稿では,運転ビデオにおける教師なし交通事故検出のためのメモリ拡張型マルチタスク協調フレームワーク(MAMTCF)を提案する。
映像フレームの外観変化と物体の動きを同時にモデル化することにより,エゴ関連事故と非エゴ関連事故の両方をより正確に検出することができる。
論文 参考訳(メタデータ) (2023-07-27T01:45:13Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
本研究では,現実の運転において頻繁に発生する多様な事故シナリオを含む大規模データセットを提案する。
提案したDeepAccidentデータセットには57Kの注釈付きフレームと285Kの注釈付きサンプルが含まれており、これは大規模なnuScenesデータセットの約7倍である。
論文 参考訳(メタデータ) (2023-04-03T17:37:00Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
本稿では,交通監視用交差点における事故検出のための新しい効率的な枠組みを提案する。
提案手法は,最先端のYOLOv4法に基づく効率的かつ高精度な物体検出を含む,3つの階層的なステップから構成される。
提案フレームワークのロバスト性は,様々な照明条件でYouTubeから収集した映像シーケンスを用いて評価する。
論文 参考訳(メタデータ) (2022-08-12T19:07:20Z) - Cross-Camera Trajectories Help Person Retrieval in a Camera Network [124.65912458467643]
既存の手法では、純粋な視覚的マッチングや時間的制約を考慮することが多いが、カメラネットワークの空間情報は無視する。
本稿では,時間的情報と空間的情報を統合したクロスカメラ生成に基づく歩行者検索フレームワークを提案する。
本手法の有効性を検証するため,最初のカメラ横断歩行者軌跡データセットを構築した。
論文 参考訳(メタデータ) (2022-04-27T13:10:48Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
本稿では,注目モジュールを持つネットワークを用いて,映像の有意な物体検出のためのコントラスト特徴を学習する。
コアテンションの定式化は、低レベル特徴と高レベル特徴を組み合わせるために用いられる。
提案手法は計算量が少なく,最先端の手法に対して良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-03T17:40:32Z) - Vehicle trajectory prediction in top-view image sequences based on deep
learning method [1.181206257787103]
周囲の車両の動きを推定し予測することは、自動車両と高度な安全システムにとって不可欠である。
道路の空中画像から得られた画像から学習した計算複雑性の低いモデルを提案する。
提案モデルでは, 対象車両とその周辺車両の移動履歴に関する画像を見るだけで, 自動車の将来の進路を予測できる。
論文 参考訳(メタデータ) (2021-02-02T20:48:19Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - AutoTrajectory: Label-free Trajectory Extraction and Prediction from
Videos using Dynamic Points [92.91569287889203]
軌道抽出と予測のための新しいラベルなしアルゴリズムAutoTrajectoryを提案する。
動画中の移動物体をよりよく捉えるために,ダイナミックポイントを導入する。
ビデオ内の歩行者などの移動物体を表すインスタンスポイントに動的ポイントを集約する。
論文 参考訳(メタデータ) (2020-07-11T08:43:34Z) - Towards Anomaly Detection in Dashcam Videos [9.558392439655012]
本稿では,ディープラーニングによるデータ駆動型異常検出のアイデアをダッシュカムビデオに適用することを提案する。
トラックダッシュカムビデオ、すなわちRetroTrucksの大規模で多様なデータセットを提示する。
本研究では, (i) クラス分類損失と (ii) 再構成に基づく損失をRetroTruckの異常検出に適用する。
論文 参考訳(メタデータ) (2020-04-11T00:10:40Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
魚眼レンズを装着した校正単眼カメラを用いて3Dパラメータを推定するロバストな手法を提案する。
我々のアプローチでは、車両が90%以上の精度で、リアルタイムで距離を抑えることができる。
論文 参考訳(メタデータ) (2020-02-28T00:24:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。