StochasticRank: Global Optimization of Scale-Free Discrete Functions
- URL: http://arxiv.org/abs/2003.02122v2
- Date: Thu, 20 Aug 2020 08:32:24 GMT
- Title: StochasticRank: Global Optimization of Scale-Free Discrete Functions
- Authors: Aleksei Ustimenko, Liudmila Prokhorenkova
- Abstract summary: In this paper, we introduce a powerful and efficient framework for direct optimization of ranking metrics.
We show that classic smoothing approaches may introduce bias and present a universal solution for a proper debiasing.
Our framework applies to any scale-free discrete loss function.
- Score: 28.224889996383396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a powerful and efficient framework for direct
optimization of ranking metrics. The problem is ill-posed due to the discrete
structure of the loss, and to deal with that, we introduce two important
techniques: stochastic smoothing and novel gradient estimate based on partial
integration. We show that classic smoothing approaches may introduce bias and
present a universal solution for a proper debiasing. Importantly, we can
guarantee global convergence of our method by adopting a recently proposed
Stochastic Gradient Langevin Boosting algorithm. Our algorithm is implemented
as a part of the CatBoost gradient boosting library and outperforms the
existing approaches on several learning-to-rank datasets. In addition to
ranking metrics, our framework applies to any scale-free discrete loss
function.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Gradient-Variation Online Learning under Generalized Smoothness [56.38427425920781]
gradient-variation online learning aims to achieve regret guarantees that scale with variations in gradients of online functions.
Recent efforts in neural network optimization suggest a generalized smoothness condition, allowing smoothness to correlate with gradient norms.
We provide the applications for fast-rate convergence in games and extended adversarial optimization.
arXiv Detail & Related papers (2024-08-17T02:22:08Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - A framework for bilevel optimization that enables stochastic and global
variance reduction algorithms [17.12280360174073]
Bilevel optimization is a problem of minimizing a value function which involves the arg-minimum of another function.
We introduce a novel framework, in which the solution of the inner problem, the solution of the linear system, and the main variable evolve at the same time.
We demonstrate that SABA, an adaptation of the celebrated SAGA algorithm in our framework, has $O(frac1T)$ convergence rate, and that it achieves linear convergence under Polyak-Lojasciewicz assumption.
arXiv Detail & Related papers (2022-01-31T18:17:25Z) - A Boosting Approach to Reinforcement Learning [59.46285581748018]
We study efficient algorithms for reinforcement learning in decision processes whose complexity is independent of the number of states.
We give an efficient algorithm that is capable of improving the accuracy of such weak learning methods.
arXiv Detail & Related papers (2021-08-22T16:00:45Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
We study the citetgarber 2020online, where the loss functions may be chosen by an adversary, but are then presented online in a uniformly random order.
We show that citetgarber 2020online algorithms achieve the optimal bounds and significantly improve their stability.
arXiv Detail & Related papers (2021-06-29T09:48:46Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
We propose textit-Meta-Regularization, a novel approach for the adaptive choice of the learning rate in first-order descent methods.
Our approach modifies the objective function by adding a regularization term, and casts the joint process parameters.
arXiv Detail & Related papers (2021-04-12T13:13:34Z) - Stochastic Compositional Gradient Descent under Compositional
constraints [13.170519806372075]
We study constrained optimization problems where the objective and constraint functions are convex and expressed as compositions of functions.
The problem arises in fair classification/regression and in the design of queuing systems.
We prove that the proposed algorithm is guaranteed to find the optimal and feasible solution almost surely.
arXiv Detail & Related papers (2020-12-17T05:38:37Z) - An adaptive stochastic gradient-free approach for high-dimensional
blackbox optimization [0.0]
We propose an adaptive gradient-free (ASGF) approach for high-dimensional non-smoothing problems.
We illustrate the performance of this method on benchmark global problems and learning tasks.
arXiv Detail & Related papers (2020-06-18T22:47:58Z) - Optimizing generalization on the train set: a novel gradient-based
framework to train parameters and hyperparameters simultaneously [0.0]
Generalization is a central problem in Machine Learning.
We present a novel approach based on a new measure of risk that allows us to develop novel fully automatic procedures for generalization.
arXiv Detail & Related papers (2020-06-11T18:04:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.