Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent
- URL: http://arxiv.org/abs/2104.05447v1
- Date: Mon, 12 Apr 2021 13:13:34 GMT
- Title: Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent
- Authors: Guangzeng Xie, Hao Jin, Dachao Lin, Zhihua Zhang
- Abstract summary: We propose textit-Meta-Regularization, a novel approach for the adaptive choice of the learning rate in first-order descent methods.
Our approach modifies the objective function by adding a regularization term, and casts the joint process parameters.
- Score: 20.47598828422897
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose \textit{Meta-Regularization}, a novel approach for the adaptive
choice of the learning rate in first-order gradient descent methods. Our
approach modifies the objective function by adding a regularization term on the
learning rate, and casts the joint updating process of parameters and learning
rates into a maxmin problem. Given any regularization term, our approach
facilitates the generation of practical algorithms. When
\textit{Meta-Regularization} takes the $\varphi$-divergence as a regularizer,
the resulting algorithms exhibit comparable theoretical convergence performance
with other first-order gradient-based algorithms. Furthermore, we theoretically
prove that some well-designed regularizers can improve the convergence
performance under the strong-convexity condition of the objective function.
Numerical experiments on benchmark problems demonstrate the effectiveness of
algorithms derived from some common $\varphi$-divergence in full batch as well
as online learning settings.
Related papers
- Towards Differentiable Multilevel Optimization: A Gradient-Based Approach [1.6114012813668932]
This paper introduces a novel gradient-based approach for multilevel optimization.
Our method significantly reduces computational complexity while improving both solution accuracy and convergence speed.
To the best of our knowledge, this is one of the first algorithms to provide a general version of implicit differentiation.
arXiv Detail & Related papers (2024-10-15T06:17:59Z) - Gradient-Variation Online Learning under Generalized Smoothness [56.38427425920781]
gradient-variation online learning aims to achieve regret guarantees that scale with variations in gradients of online functions.
Recent efforts in neural network optimization suggest a generalized smoothness condition, allowing smoothness to correlate with gradient norms.
We provide the applications for fast-rate convergence in games and extended adversarial optimization.
arXiv Detail & Related papers (2024-08-17T02:22:08Z) - On the convergence of adaptive first order methods: proximal gradient and alternating minimization algorithms [4.307128674848627]
AdaPG$q,r$ is a framework that unifies and extends existing results by providing larger stepsize policies and improved lower bounds.
Different choices of the parameters $q$ and $r$ are discussed and the efficacy of the resulting methods is demonstrated through numerical simulations.
arXiv Detail & Related papers (2023-11-30T10:29:43Z) - Online Learning Under A Separable Stochastic Approximation Framework [20.26530917721778]
We propose an online learning algorithm for a class of machine learning models under a separable approximation framework.
We show that the proposed algorithm produces more robust and test performance when compared to other popular learning algorithms.
arXiv Detail & Related papers (2023-05-12T13:53:03Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Implicit Bayesian meta-learning (iBaML) method broadens the scope of learnable priors, but also quantifies the associated uncertainty.
Analytical error bounds are established to demonstrate the precision and efficiency of the generalized implicit gradient over the explicit one.
arXiv Detail & Related papers (2023-03-31T02:10:30Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
It is desired to design a universal framework for adaptive algorithms to solve general problems.
In particular, our novel framework provides adaptive methods under non convergence support for setting.
arXiv Detail & Related papers (2021-06-15T15:16:28Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Learning to be Global Optimizer [28.88646928299302]
We learn an optimal network and escaping capability algorithm for some benchmark functions.
We show that the learned algorithm significantly outperforms some well-known classical optimization algorithms.
arXiv Detail & Related papers (2020-03-10T03:46:25Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.