論文の概要: Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach
- arxiv url: http://arxiv.org/abs/2003.02157v3
- Date: Wed, 6 Jan 2021 02:51:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 01:22:13.078439
- Title: Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach
- Title(参考訳): マイクログリッドを用いたエッジコンピューティングのためのリスク対応エネルギースケジューリング:マルチエージェント深部強化学習アプローチ
- Authors: Md. Shirajum Munir, Sarder Fakhrul Abedin, Nguyen H. Tran, Zhu Han,
Eui-Nam Huh, Choong Seon Hong
- Abstract要約: マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
- 参考スコア(独自算出の注目度): 82.6692222294594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, multi-access edge computing (MEC) is a key enabler for
handling the massive expansion of Internet of Things (IoT) applications and
services. However, energy consumption of a MEC network depends on volatile
tasks that induces risk for energy demand estimations. As an energy supplier, a
microgrid can facilitate seamless energy supply. However, the risk associated
with energy supply is also increased due to unpredictable energy generation
from renewable and non-renewable sources. Especially, the risk of energy
shortfall is involved with uncertainties in both energy consumption and
generation. In this paper, we study a risk-aware energy scheduling problem for
a microgrid-powered MEC network. First, we formulate an optimization problem
considering the conditional value-at-risk (CVaR) measurement for both energy
consumption and generation, where the objective is to minimize the expected
residual of scheduled energy for the MEC networks and we show this problem is
an NP-hard problem. Second, we analyze our formulated problem using a
multi-agent stochastic game that ensures the joint policy Nash equilibrium, and
show the convergence of the proposed model. Third, we derive the solution by
applying a multi-agent deep reinforcement learning (MADRL)-based asynchronous
advantage actor-critic (A3C) algorithm with shared neural networks. This method
mitigates the curse of dimensionality of the state space and chooses the best
policy among the agents for the proposed problem. Finally, the experimental
results establish a significant performance gain by considering CVaR for high
accuracy energy scheduling of the proposed model than both the single and
random agent models.
- Abstract(参考訳): 近年、マルチアクセスエッジコンピューティング(MEC)は、IoT(Internet of Things)アプリケーションやサービスを大規模に拡張する上で重要な手段となっている。
しかしながら、mecネットワークのエネルギー消費は、エネルギー需要推定のリスクを引き起こす揮発性タスクに依存する。
エネルギー供給者として、マイクログリッドはシームレスなエネルギー供給を容易にする。
しかし、再生可能資源や再生不能源からの予測不能なエネルギー発生により、エネルギー供給に関わるリスクも増大する。
特に、エネルギー不足のリスクはエネルギー消費と発電の両方の不確実性に関係している。
本稿では,マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
まず、エネルギー消費と生成の両面での条件付き値-リスク(CVaR)の測定を考慮した最適化問題を定式化し、その目的は、MECネットワークにおけるスケジュールされたエネルギーの残余を最小化することである。
第2に,共同政策のナッシュ均衡を保証するマルチエージェント確率ゲームを用いて定式化問題を解析し,提案モデルの収束性を示す。
第3に,マルチエージェント深層強化学習(madrl)ベースの非同期アドバンテージアクタ-クリティック(a3c)アルゴリズムを共有ニューラルネットワークに適用することにより,この解を導出する。
本手法は, 状態空間の次元性の呪いを軽減し, 提案した問題に対するエージェント間の最善のポリシーを選択する。
最後に,実験結果から,単エージェントモデルとランダムエージェントモデルの両方と比較して,提案モデルの高精度エネルギースケジューリングのためのCVaRを考慮し,有意な性能向上を実現した。
関連論文リスト
- Energy-Aware Dynamic Neural Inference [39.04688735618206]
エネルギーハーベスターと有限容量エネルギーストレージを備えたオンデバイス適応型推論システムを提案する。
環境エネルギーの速度が増加するにつれて、エネルギー・信頼性を考慮した制御方式は精度を約5%向上させることが示されている。
我々は、信頼性を意識し、認識できないコントローラを理論的に保証する原則的なポリシーを導出する。
論文 参考訳(メタデータ) (2024-11-04T16:51:22Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
ネットワーク規模が大きくなるにつれて、パケット衝突によるLoRaネットワークのエネルギー効率は急激に低下する。
マルチエージェント強化学習(MALoRa)に基づく伝送パラメータ割り当てアルゴリズムを提案する。
シミュレーションの結果,MALoRaはベースラインアルゴリズムと比較してシステムEEを著しく改善することがわかった。
論文 参考訳(メタデータ) (2023-09-16T11:37:23Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
フェデレートラーニング(FL)は、従来の集中型アプローチとは対照的に、デバイスが協調的にモデルトレーニングを行う分散技術として登場した。
FLの既存の取り組みにもかかわらず、その環境影響は、無線ネットワークへの適用性に関するいくつかの重要な課題が特定されているため、まだ調査中である。
現在の研究は遺伝的アルゴリズム(GA)アプローチを提案しており、FLプロセス全体のエネルギー消費と不要な資源利用の両方を最小化することを目標としている。
論文 参考訳(メタデータ) (2023-06-25T13:10:38Z) - Sustainable Edge Intelligence Through Energy-Aware Early Exiting [0.726437825413781]
EHエッジインテリジェンスシステムにおいて,エネルギー適応型動的早期退避を提案する。
提案手法は, サンプルごとの最適計算量を決定する, エネルギー対応のEEポリシーを導出する。
その結果, エネルギーに依存しない政策と比較して, 精度は25%, サービスレートは35%向上した。
論文 参考訳(メタデータ) (2023-05-23T14:17:44Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
本稿では、自律制御と再生可能エネルギー資源のスマート電力グリッドシステムへの統合のための多エージェント深層強化学習(DRL)フレームワークを提案する。
特に,提案フレームワークは,住宅利用者に対する需要応答 (DR) と分散エネルギー管理 (DEM) を共同で検討している。
論文 参考訳(メタデータ) (2022-11-29T01:18:58Z) - Cascaded Deep Hybrid Models for Multistep Household Energy Consumption
Forecasting [5.478764356647437]
本研究は,多段階家庭電力消費予測のための2つのハイブリッドキャスケードモデルを提案する。
提案したハイブリッドモデルでは,既存のマルチステップ電力消費予測手法よりも優れた予測性能が得られる。
論文 参考訳(メタデータ) (2022-07-06T11:02:23Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z) - Threshold-Based Data Exclusion Approach for Energy-Efficient Federated
Edge Learning [4.25234252803357]
Federated Edge Learning (FEEL) は次世代無線ネットワークにおいて有望な分散学習技術である。
FEELは、モデルトレーニングラウンド中に消費される電力により、エネルギー制約された参加機器の寿命を大幅に短縮する可能性がある。
本稿では,FEELラウンドにおける計算および通信エネルギー消費を最小化するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T13:34:40Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。