Deterministic Decoding for Discrete Data in Variational Autoencoders
- URL: http://arxiv.org/abs/2003.02174v1
- Date: Wed, 4 Mar 2020 16:36:52 GMT
- Title: Deterministic Decoding for Discrete Data in Variational Autoencoders
- Authors: Daniil Polykovskiy and Dmitry Vetrov
- Abstract summary: We study a VAE model with a deterministic decoder (DD-VAE) for sequential data that selects the highest-scoring tokens instead of sampling.
We demonstrate the performance of DD-VAE on multiple datasets, including molecular generation and optimization problems.
- Score: 5.254093731341154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational autoencoders are prominent generative models for modeling
discrete data. However, with flexible decoders, they tend to ignore the latent
codes. In this paper, we study a VAE model with a deterministic decoder
(DD-VAE) for sequential data that selects the highest-scoring tokens instead of
sampling. Deterministic decoding solely relies on latent codes as the only way
to produce diverse objects, which improves the structure of the learned
manifold. To implement DD-VAE, we propose a new class of bounded support
proposal distributions and derive Kullback-Leibler divergence for Gaussian and
uniform priors. We also study a continuous relaxation of deterministic decoding
objective function and analyze the relation of reconstruction accuracy and
relaxation parameters. We demonstrate the performance of DD-VAE on multiple
datasets, including molecular generation and optimization problems.
Related papers
- Protect Before Generate: Error Correcting Codes within Discrete Deep Generative Models [3.053842954605396]
We introduce a novel method that enhances variational inference in discrete latent variable models.
We leverage Error Correcting Codes (ECCs) to introduce redundancy in the latent representations.
This redundancy is then exploited by the variational posterior to yield more accurate estimates.
arXiv Detail & Related papers (2024-10-10T11:59:58Z) - Unified Generation, Reconstruction, and Representation: Generalized Diffusion with Adaptive Latent Encoding-Decoding [90.77521413857448]
Deep generative models are anchored in three core capabilities -- generating new instances, reconstructing inputs, and learning compact representations.
We introduce Generalized generative adversarial-Decoding Diffusion Probabilistic Models (EDDPMs)
EDDPMs generalize the Gaussian noising-denoising in standard diffusion by introducing parameterized encoding-decoding.
Experiments on text, proteins, and images demonstrate the flexibility to handle diverse data and tasks.
arXiv Detail & Related papers (2024-02-29T10:08:57Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Vector Quantized Wasserstein Auto-Encoder [57.29764749855623]
We study learning deep discrete representations from the generative viewpoint.
We endow discrete distributions over sequences of codewords and learn a deterministic decoder that transports the distribution over the sequences of codewords to the data distribution.
We develop further theories to connect it with the clustering viewpoint of WS distance, allowing us to have a better and more controllable clustering solution.
arXiv Detail & Related papers (2023-02-12T13:51:36Z) - Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes [23.682509357305406]
Autoencoders and their variants are among the most widely used models in representation learning and generative modeling.
We propose a novel Sparse Gaussian Process Bayesian Autoencoder model in which we impose fully sparse Gaussian Process priors on the latent space of a Bayesian Autoencoder.
arXiv Detail & Related papers (2023-02-09T09:57:51Z) - String-based Molecule Generation via Multi-decoder VAE [56.465033997245776]
We investigate the problem of string-based molecular generation via variational autoencoders (VAEs)
We propose a simple, yet effective idea to improve the performance of VAE for the task.
In our experiments, the proposed VAE model particularly performs well for generating a sample from out-of-domain distribution.
arXiv Detail & Related papers (2022-08-23T03:56:30Z) - Model Selection for Bayesian Autoencoders [25.619565817793422]
We propose to optimize the distributional sliced-Wasserstein distance between the output of the autoencoder and the empirical data distribution.
We turn our BAE into a generative model by fitting a flexible Dirichlet mixture model in the latent space.
We evaluate our approach qualitatively and quantitatively using a vast experimental campaign on a number of unsupervised learning tasks and show that, in small-data regimes where priors matter, our approach provides state-of-the-art results.
arXiv Detail & Related papers (2021-06-11T08:55:00Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - On the Encoder-Decoder Incompatibility in Variational Text Modeling and
Beyond [82.18770740564642]
Variational autoencoders (VAEs) combine latent variables with amortized variational inference.
We observe the encoder-decoder incompatibility that leads to poor parameterizations of the data manifold.
We propose Coupled-VAE, which couples a VAE model with a deterministic autoencoder with the same structure.
arXiv Detail & Related papers (2020-04-20T10:34:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.