Unified Generation, Reconstruction, and Representation: Generalized Diffusion with Adaptive Latent Encoding-Decoding
- URL: http://arxiv.org/abs/2402.19009v2
- Date: Wed, 5 Jun 2024 07:28:52 GMT
- Title: Unified Generation, Reconstruction, and Representation: Generalized Diffusion with Adaptive Latent Encoding-Decoding
- Authors: Guangyi Liu, Yu Wang, Zeyu Feng, Qiyu Wu, Liping Tang, Yuan Gao, Zhen Li, Shuguang Cui, Julian McAuley, Zichao Yang, Eric P. Xing, Zhiting Hu,
- Abstract summary: Deep generative models are anchored in three core capabilities -- generating new instances, reconstructing inputs, and learning compact representations.
We introduce Generalized generative adversarial-Decoding Diffusion Probabilistic Models (EDDPMs)
EDDPMs generalize the Gaussian noising-denoising in standard diffusion by introducing parameterized encoding-decoding.
Experiments on text, proteins, and images demonstrate the flexibility to handle diverse data and tasks.
- Score: 90.77521413857448
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The vast applications of deep generative models are anchored in three core capabilities -- generating new instances, reconstructing inputs, and learning compact representations -- across various data types, such as discrete text/protein sequences and continuous images. Existing model families, like variational autoencoders (VAEs), generative adversarial networks (GANs), autoregressive models, and (latent) diffusion models, generally excel in specific capabilities and data types but fall short in others. We introduce Generalized Encoding-Decoding Diffusion Probabilistic Models (EDDPMs) which integrate the core capabilities for broad applicability and enhanced performance. EDDPMs generalize the Gaussian noising-denoising in standard diffusion by introducing parameterized encoding-decoding. Crucially, EDDPMs are compatible with the well-established diffusion model objective and training recipes, allowing effective learning of the encoder-decoder parameters jointly with diffusion. By choosing appropriate encoder/decoder (e.g., large language models), EDDPMs naturally apply to different data types. Extensive experiments on text, proteins, and images demonstrate the flexibility to handle diverse data and tasks and the strong improvement over various existing models.
Related papers
- Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - Protect Before Generate: Error Correcting Codes within Discrete Deep Generative Models [3.053842954605396]
We introduce a novel method that enhances variational inference in discrete latent variable models.
We leverage Error Correcting Codes (ECCs) to introduce redundancy in the latent representations.
This redundancy is then exploited by the variational posterior to yield more accurate estimates.
arXiv Detail & Related papers (2024-10-10T11:59:58Z) - Aggregation of Multi Diffusion Models for Enhancing Learned Representations [4.126721111013567]
This paper introduces a novel algorithm, Aggregation of Multi Diffusion Models (AMDM)
AMDM synthesizes features from multiple diffusion models into a specified model, enhancing its learned representations to activate specific features for fine-grained control.
Experimental results demonstrate that AMDM significantly improves fine-grained control without additional training or inference time.
arXiv Detail & Related papers (2024-10-02T06:16:06Z) - Variational Diffusion Auto-encoder: Latent Space Extraction from
Pre-trained Diffusion Models [0.0]
Variational Auto-Encoders (VAEs) face challenges with the quality of generated images, often presenting noticeable blurriness.
This issue stems from the unrealistic assumption that approximates the conditional data distribution, $p(textbfx | textbfz)$, as an isotropic Gaussian.
We illustrate how one can extract a latent space from a pre-existing diffusion model by optimizing an encoder to maximize the marginal data log-likelihood.
arXiv Detail & Related papers (2023-04-24T14:44:47Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
We revisit generatively pre-training visual representations in light of recent interest in denoising diffusion models.
While directly pre-training with diffusion models does not produce strong representations, we condition diffusion models on masked input and formulate diffusion models as masked autoencoders (DiffMAE)
We perform a comprehensive study on the pros and cons of design choices and build connections between diffusion models and masked autoencoders.
arXiv Detail & Related papers (2023-04-06T17:59:56Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - String-based Molecule Generation via Multi-decoder VAE [56.465033997245776]
We investigate the problem of string-based molecular generation via variational autoencoders (VAEs)
We propose a simple, yet effective idea to improve the performance of VAE for the task.
In our experiments, the proposed VAE model particularly performs well for generating a sample from out-of-domain distribution.
arXiv Detail & Related papers (2022-08-23T03:56:30Z) - Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference [55.35176938713946]
We develop deep autoencoding topic model (DATM) that uses a hierarchy of gamma distributions to construct its multi-stochastic-layer generative network.
We propose a Weibull upward-downward variational encoder that deterministically propagates information upward via a deep neural network, followed by a downward generative model.
The efficacy and scalability of our models are demonstrated on both unsupervised and supervised learning tasks on big corpora.
arXiv Detail & Related papers (2020-06-15T22:22:56Z) - Deterministic Decoding for Discrete Data in Variational Autoencoders [5.254093731341154]
We study a VAE model with a deterministic decoder (DD-VAE) for sequential data that selects the highest-scoring tokens instead of sampling.
We demonstrate the performance of DD-VAE on multiple datasets, including molecular generation and optimization problems.
arXiv Detail & Related papers (2020-03-04T16:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.