論文の概要: Interactive Robot Training for Non-Markov Tasks
- arxiv url: http://arxiv.org/abs/2003.02232v2
- Date: Sat, 28 Nov 2020 17:03:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 13:26:52.941745
- Title: Interactive Robot Training for Non-Markov Tasks
- Title(参考訳): 非マルコフ課題のための対話型ロボット訓練
- Authors: Ankit Shah, Samir Wadhwania, Julie Shah
- Abstract要約: 本研究では,教師が提示した2つのデモからロボットを学習することのできる,ベイズ的対話型ロボット訓練フレームワークを提案する。
また、タスク実行を最も不確実な受け入れ可能性で識別するためのアクティブな学習手法を提案する。
我々は,ロボットにディナーテーブルをセットするように教えるユーザスタディを通じて,現実の環境でのアプローチの有効性を実証する。
- 参考スコア(独自算出の注目度): 6.252236971703546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Defining sound and complete specifications for robots using formal languages
is challenging, while learning formal specifications directly from
demonstrations can lead to over-constrained task policies. In this paper, we
propose a Bayesian interactive robot training framework that allows the robot
to learn from both demonstrations provided by a teacher, and that teacher's
assessments of the robot's task executions. We also present an active learning
approach -- inspired by uncertainty sampling -- to identify the task execution
with the most uncertain degree of acceptability. Through a simulated
experiment, we demonstrate that our active learning approach identifies a
teacher's intended task specification with an equivalent or greater similarity
when compared to an approach that learns purely from demonstrations. Finally,
we demonstrate the efficacy of our approach in a real-world setting through a
user-study based on teaching a robot to set a dinner table.
- Abstract(参考訳): 形式言語を使用したロボットの健全かつ完全な仕様定義は難しいが、デモから直接形式仕様を学ぶことは、過度に制約されたタスクポリシにつながる可能性がある。
本稿では,教師が提供する実演と,教師によるタスク実行の評価から学ぶことができる対話型ロボット訓練フレームワークを提案する。
また、不確実サンプリングにインスパイアされたアクティブな学習手法を提案し、タスクの実行を最も不確実な受け入れ可能性で識別する。
シミュレーション実験により,実演から純粋に学習する手法と比較して,教師の意図した課題仕様を同等あるいはそれ以上の類似性で識別できることが実証された。
最後に,ロボットにディナーテーブルをセットするように教えるユーザスタディを通じて,現実の環境でのアプローチの有効性を実証する。
関連論文リスト
- Self-Explainable Affordance Learning with Embodied Caption [63.88435741872204]
具体的キャプションを具現化したSelf-Explainable Affordance Learning (SEA)を紹介する。
SEAは、ロボットが意図を明確に表現し、説明可能な視覚言語キャプションと視覚能力学習のギャップを埋めることを可能にする。
本稿では, 簡便かつ効率的な方法で, 空き地と自己説明を効果的に組み合わせた新しいモデルを提案する。
論文 参考訳(メタデータ) (2024-04-08T15:22:38Z) - How Can Everyday Users Efficiently Teach Robots by Demonstrations? [3.6145826787059643]
本稿では,人間の教師に情報伝達の実証例を提案するための指標として,タスク関連情報エントロピーという不確実性の尺度を提案する。
その結果,教師のデモンストレーションからロボット学習効率が大幅に向上した。
論文 参考訳(メタデータ) (2023-10-19T18:21:39Z) - Proactive Human-Robot Interaction using Visuo-Lingual Transformers [0.0]
人間は人間の相互作用を通して文脈を推測するために、潜伏したビスオ・言語的手がかりを抽出する能力を持っている。
本研究では,シーンからの視覚的手がかり,ユーザからの言語コマンド,事前オブジェクト間相互作用の知識を用いて,ユーザが達成しようとしている目標を積極的に予測する学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-04T00:50:21Z) - Continual Robot Learning using Self-Supervised Task Inference [19.635428830237842]
新しいタスクを継続的に学習するための自己教師型タスク推論手法を提案する。
我々は、行動マッチング型自己教師型学習目標を用いて、新しいタスク推論ネットワーク(TINet)を訓練する。
マルチタスクポリシはTINet上に構築され、タスクよりもパフォーマンスを最適化するために強化学習でトレーニングされている。
論文 参考訳(メタデータ) (2023-09-10T09:32:35Z) - Learning Video-Conditioned Policies for Unseen Manipulation Tasks [83.2240629060453]
ビデオ条件付きポリシー学習は、以前は目に見えないタスクの人間のデモをロボット操作スキルにマッピングする。
我々は,現在のシーン観察と対象課題のビデオから適切なアクションを生成するためのポリシーを学習する。
われわれは,多タスクロボット操作環境の課題と,技術面における性能の面から,そのアプローチを検証した。
論文 参考訳(メタデータ) (2023-05-10T16:25:42Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - Autonomous Assessment of Demonstration Sufficiency via Bayesian Inverse
Reinforcement Learning [22.287031690633174]
本稿では,逆強化学習とバリュー・アット・リスクに基づく新たな自己評価手法を提案する。
提案手法は,ユーザの望むパフォーマンスレベルにおいて,ロボットの動作を可能にする。
論文 参考訳(メタデータ) (2022-11-28T16:48:24Z) - Summarizing a virtual robot's past actions in natural language [0.3553493344868413]
本稿では,ロボット行動と自然言語記述とを一致させた一般的なデータセットを,ロボット行動要約作業のトレーニング場として活用する方法について述べる。
自動プランナーが使用する動作の中間テキスト表現や、ロボットの自我中心の映像フレームから、このような要約を生成するためのいくつかの方法を提案し、テストする。
論文 参考訳(メタデータ) (2022-03-13T15:00:46Z) - BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning [108.41464483878683]
本稿では,視覚に基づくロボット操作システムにおいて,新しいタスクを一般化することの課題について検討する。
実演と介入の両方から学ぶことができるインタラクティブで柔軟な模倣学習システムを開発した。
実際のロボットにおけるデータ収集を100以上のタスクにスケールすると、このシステムは平均的な成功率44%で24の目に見えない操作タスクを実行できる。
論文 参考訳(メタデータ) (2022-02-04T07:30:48Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
我々は,実世界の長距離ロボット操作作業に,スキル発見による取り組みを行う。
未解決のデモンストレーションから再利用可能なスキルのライブラリを学ぶためのボトムアップアプローチを提案する。
提案手法は,多段階操作タスクにおける最先端の模倣学習手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-09-28T16:18:54Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。