論文の概要: mmFall: Fall Detection using 4D MmWave Radar and a Hybrid Variational
RNN AutoEncoder
- arxiv url: http://arxiv.org/abs/2003.02386v4
- Date: Tue, 28 Jul 2020 17:33:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 06:41:16.918601
- Title: mmFall: Fall Detection using 4D MmWave Radar and a Hybrid Variational
RNN AutoEncoder
- Title(参考訳): mmFall: 4次元MmWaveレーダとハイブリッド変分RNNオートエンコーダを用いた転倒検出
- Authors: Feng Jin, Arindam Sengupta, and Siyang Cao
- Abstract要約: mmFallは、人体の点雲と体中心波を収集する、新興ミリ波(mmWave)レーダーセンサーである。
異常レベルのスパイクとセントロイド高さの低下が同時に起こると、転倒が起こったと主張されている。
レーダデータのランダム性を克服するために、提案されたVRAEは、従来の決定論的アプローチではなく、確率論的アプローチである変分推論を使用する。
- 参考スコア(独自算出の注目度): 0.4588028371034407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we propose mmFall - a novel fall detection system, which
comprises of (i) the emerging millimeter-wave (mmWave) radar sensor to collect
the human body's point cloud along with the body centroid, and (ii) a
variational recurrent autoencoder (VRAE) to compute the anomaly level of the
body motion based on the acquired point cloud. A fall is claimed to have
occurred when the spike in anomaly level and the drop in centroid height occur
simultaneously. The mmWave radar sensor provides several advantages, such as
privacycompliance and high-sensitivity to motion, over the traditional sensing
modalities. However, (i) randomness in radar point cloud data and (ii)
difficulties in fall collection/labeling in the traditional supervised fall
detection approaches are the two main challenges. To overcome the randomness in
radar data, the proposed VRAE uses variational inference, a probabilistic
approach rather than the traditional deterministic approach, to infer the
posterior probability of the body's latent motion state at each frame, followed
by a recurrent neural network (RNN) to learn the temporal features of the
motion over multiple frames. Moreover, to circumvent the difficulties in fall
data collection/labeling, the VRAE is built upon an autoencoder architecture in
a semi-supervised approach, and trained on only normal activities of daily
living (ADL) such that in the inference stage the VRAE will generate a spike in
the anomaly level once an abnormal motion, such as fall, occurs. During the
experiment, we implemented the VRAE along with two other baselines, and tested
on the dataset collected in an apartment. The receiver operating characteristic
(ROC) curve indicates that our proposed model outperforms the other two
baselines, and achieves 98% detection out of 50 falls at the expense of just 2
false alarms.
- Abstract(参考訳): 本稿では,新しい転倒検出システムであるmmFallを提案する。
(i)人体中心体と共に人体の点雲を収集する新興ミリ波(ミリ波)レーダーセンサ
(II) 取得した点雲に基づいて身体運動の異常レベルを算出するための変動リカレントオートエンコーダ(VRAE)。
異常レベルのスパイクと遠心高さの低下が同時に発生したとき、転倒が起こったとされる。
mmWaveレーダーセンサーは、従来のセンシング方式に比べて、プライバシーの遵守や動きに対する高感度といったいくつかの利点を提供している。
しかし、
(i)レーダーポイント雲データにおけるランダム性及び
(II)従来型の転倒検出手法における転倒収集・ラベル付けの難しさが主な課題である。
レーダデータのランダム性を克服するために、提案したVRAEは、従来の決定論的アプローチよりも確率論的アプローチである変動推論を用いて、各フレームにおける身体の潜伏運動状態の後方確率を推定し、その後、リカレントニューラルネットワーク(RNN)を用いて複数のフレーム上の動作の時間的特徴を学習する。
また、転倒データ収集・ラベル付けの難しさを回避するため、VRAEは半教師付きアプローチでオートエンコーダアーキテクチャ上に構築され、推論段階では、転倒などの異常な動きが発生したときに異常レベルのスパイクが発生するように日常生活の正常な活動(ADL)のみに基づいて訓練される。
実験では、他の2つのベースラインとともにVRAEを実装し、アパートで収集したデータセットでテストした。
受信機動作特性(ROC)曲線は,提案したモデルが他の2つのベースラインより優れており,50件中98%が誤報を2件残さずに検出できることを示している。
関連論文リスト
- Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - BSSAD: Towards A Novel Bayesian State-Space Approach for Anomaly
Detection in Multivariate Time Series [0.0]
ベイジアン状態空間異常検出(BSSAD)と呼ばれる新しい,革新的な異常検出手法を提案する。
提案手法の設計は,ベイズ状態空間アルゴリズムの次の状態予測における強みと,繰り返しニューラルネットワークとオートエンコーダの有効性を組み合わせたものである。
特に,粒子フィルタとアンサンブルカルマンフィルタのベイズ状態空間モデルの利用に着目する。
論文 参考訳(メタデータ) (2023-01-30T16:21:18Z) - Are we certain it's anomalous? [57.729669157989235]
時系列における異常検出は、高度に非線形な時間的相関のため、異常は稀であるため、複雑なタスクである。
本稿では,異常検出(HypAD)におけるハイパボリック不確実性の新しい利用法を提案する。
HypADは自己指導で入力信号を再構築する。
論文 参考訳(メタデータ) (2022-11-16T21:31:39Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
本稿では, 自己監督型マスク型畳み込み変圧器ブロック (SSMCTB) について述べる。
本研究では,従来の自己教師型予測畳み込み抑止ブロック(SSPCAB)を3次元マスク付き畳み込み層,チャンネルワイドアテンション用トランスフォーマー,およびハマーロスに基づく新たな自己教師型目標を用いて拡張する。
論文 参考訳(メタデータ) (2022-09-25T04:56:10Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - MDPose: Human Skeletal Motion Reconstruction Using WiFi Micro-Doppler
Signatures [4.92674421365689]
WiFiマイクロドップラーシグネチャに基づくヒト骨格運動再建のための新しいフレームワークであるMDPoseを提案する。
17個のキーポイントを持つ骨格モデルを再構築することで、人間の活動を追跡する効果的なソリューションを提供する。
MDPoseは最先端のRFベースのポーズ推定システムより優れている。
論文 参考訳(メタデータ) (2022-01-11T21:46:28Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
本稿では,Deep Convolutional Autoencoding Memory Network (CAE-M) という,ディープラーニングに基づく新しい異常検出アルゴリズムを提案する。
我々はまず,最大平均離散値(MMD)を用いたマルチセンサデータの空間依存性を特徴付けるディープ畳み込みオートエンコーダを構築する。
そして,線形(自己回帰モデル)と非線形予測(注意を伴う大規模LSTM)からなるメモリネットワークを構築し,時系列データから時間依存性を捉える。
論文 参考訳(メタデータ) (2021-07-27T06:48:20Z) - Anomaly Detection in Unsupervised Surveillance Setting Using Ensemble of
Multimodal Data with Adversarial Defense [0.3867363075280543]
本稿では,実時間画像とIMUセンサデータの異常度を推定するアンサンブル検出機構を提案する。
提案手法は,IEEE SP Cup-2020データセットで97.8%の精度で良好に動作する。
論文 参考訳(メタデータ) (2020-07-17T20:03:02Z) - Motion and Region Aware Adversarial Learning for Fall Detection with
Thermal Imaging [8.110295985047278]
転倒検知のためのホームベースのカメラシステムは、しばしば人々のプライバシーを危険にさらす。
転倒はめったに起こらないため、クラス不均衡によるアルゴリズムの学習は簡単ではない。
熱画像を用いた対向フレームワーク内での転倒検出を異常検出として定式化する。
論文 参考訳(メタデータ) (2020-04-17T17:17:29Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。