TIME: A Transparent, Interpretable, Model-Adaptive and Explainable
Neural Network for Dynamic Physical Processes
- URL: http://arxiv.org/abs/2003.02426v2
- Date: Fri, 6 Mar 2020 04:45:20 GMT
- Title: TIME: A Transparent, Interpretable, Model-Adaptive and Explainable
Neural Network for Dynamic Physical Processes
- Authors: Gurpreet Singh, Soumyajit Gupta, Matt Lease, Clint N. Dawson
- Abstract summary: We present a fully convolutional architecture that captures the invariant structure of the domain to reconstruct the observable system.
Our intent is to learn coupled dynamic processes interpreted as deviations from true kernels representing isolated processes for model-adaptivity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial Differential Equations are infinite dimensional encoded
representations of physical processes. However, imbibing multiple observation
data towards a coupled representation presents significant challenges. We
present a fully convolutional architecture that captures the invariant
structure of the domain to reconstruct the observable system. The proposed
architecture is significantly low-weight compared to other networks for such
problems. Our intent is to learn coupled dynamic processes interpreted as
deviations from true kernels representing isolated processes for
model-adaptivity. Experimental analysis shows that our architecture is robust
and transparent in capturing process kernels and system anomalies. We also show
that high weights representation is not only redundant but also impacts network
interpretability. Our design is guided by domain knowledge, with isolated
process representations serving as ground truths for verification. These allow
us to identify redundant kernels and their manifestations in activation maps to
guide better designs that are both interpretable and explainable unlike
traditional deep-nets.
Related papers
- Identifiable Representation and Model Learning for Latent Dynamic Systems [0.0]
We study the problem of identifiable representation and model learning for latent dynamic systems.
We prove that, for linear or affine nonlinear latent dynamic systems, it is possible to identify the representations up to scaling and determine the models up to some simple transformations.
arXiv Detail & Related papers (2024-10-23T13:55:42Z) - Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
We propose a framework that acquires more explainable activation heatmaps and simultaneously increase the model performance.
Specifically, our framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning.
Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations.
arXiv Detail & Related papers (2024-08-08T17:20:08Z) - The Dynamic Net Architecture: Learning Robust and Holistic Visual Representations Through Self-Organizing Networks [3.9848584845601014]
We present a novel intelligent-system architecture called "Dynamic Net Architecture" (DNA)
DNA relies on recurrence-stabilized networks and discuss it in application to vision.
arXiv Detail & Related papers (2024-07-08T06:22:10Z) - Hierarchical Invariance for Robust and Interpretable Vision Tasks at Larger Scales [54.78115855552886]
We show how to construct over-complete invariants with a Convolutional Neural Networks (CNN)-like hierarchical architecture.
With the over-completeness, discriminative features w.r.t. the task can be adaptively formed in a Neural Architecture Search (NAS)-like manner.
For robust and interpretable vision tasks at larger scales, hierarchical invariant representation can be considered as an effective alternative to traditional CNN and invariants.
arXiv Detail & Related papers (2024-02-23T16:50:07Z) - When Representations Align: Universality in Representation Learning Dynamics [8.188549368578704]
We derive an effective theory of representation learning under the assumption that the encoding map from input to hidden representation and the decoding map from representation to output are arbitrary smooth functions.
We show through experiments that the effective theory describes aspects of representation learning dynamics across a range of deep networks with different activation functions and architectures.
arXiv Detail & Related papers (2024-02-14T12:48:17Z) - Piecewise-Velocity Model for Learning Continuous-time Dynamic Node
Representations [0.0]
Piecewise-Veable Model (PiVeM) for representation of continuous-time dynamic networks.
We show that PiVeM can successfully represent network structure and dynamics in ultra-low two-dimensional spaces.
It outperforms relevant state-of-art methods in downstream tasks such as link prediction.
arXiv Detail & Related papers (2022-12-23T13:57:56Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - Discrete-Valued Neural Communication [85.3675647398994]
We show that restricting the transmitted information among components to discrete representations is a beneficial bottleneck.
Even though individuals have different understandings of what a "cat" is based on their specific experiences, the shared discrete token makes it possible for communication among individuals to be unimpeded by individual differences in internal representation.
We extend the quantization mechanism from the Vector-Quantized Variational Autoencoder to multi-headed discretization with shared codebooks and use it for discrete-valued neural communication.
arXiv Detail & Related papers (2021-07-06T03:09:25Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
We first show that ResNets fail to be meaningful dynamical in this richer sense.
We then demonstrate that neural network models can learn to represent continuous dynamical systems.
We introduce ContinuousNet as a continuous-in-depth generalization of ResNet architectures.
arXiv Detail & Related papers (2020-08-05T22:54:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.